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Read carefully

1. Calculators may be used in this paper.
2. Candidates should answer all questions.
3. Full credit will be given only where the solution contains appropriate working.
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Marks
Answer all the questions.

1. (@) Given f(x) = cos’x ¢~ | —125 <x< % , obtain f'(x) and evaluatef’(%). 3,1
. . tan”' 2x

() Differentiate g(x) = H‘T . 3
2. Obtain the binomial expansion of (a* - 3)*. 3
3. A curve is defined by the equations

x = 5cos 8, y = 5sin 8, (0<0<2m).
_ . dy
Use parametric differentiation to find Ei— in terms of 6. 2
73

Find the equation of the tangent to the curve at the point where 8 =74 . 3
4, Given z =1 + 2i, express 2%(z + 3) in the form a + ¢b. 2

Hence, or otherwise, verify that 1 + 27 1s a root of the equation

2+ 325 -5z +25=0.

Obtain the other roots of this equation.

5. Express — in partial fractions. 2
X —x—6
Evaluatefl—-ﬂ-l——dx 4
oxt—x—6

6. Write down the 2 X 2 matrix M, associated with an anti-clockwise rotation of

% radians about the origin. 2

Write down the matrix M, associated with reflection in the x-axis. 1

Evaluate M, M, and describe geometrically the effect of the transformation

represented by M, M. 2
7. Obtain the first three non-zero terms in the Maclaurin expansion of

fx) = e sinx. 5
8. Use the Euclidean algorithm to show that (231, 17) = 1 where (a, ) denotes the

highest common factor of @ and &.

Hence find integers x and v such that 231x + 17y = 1. 4
9, Use the substitution x = (z — 1) to obtain I—l— dx . 5

(1+ )’
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10. Determine whether the function f(x) = x* sin 2x is odd, even or neither.

Justify your answer. 3

11. A solid is formed by rotating the curve y = ¢ ** between x = 0 and x = 1 through
360° about the x-axis. Calculate the volume of the solid that is formed. 5

M

12. Prove by induction that o (xe*} = (x + n)e” for all integers n 2 1. 5
x

x—3
13. The function f is defined by f(x) = w12 " # ~2, and the diagram shows part of

1ts graph. +2
_/ “yl
/ X
{a) Obtain algebraically the asymptotes of the graph of f. 3
() Prove that f has no stationary values.
(c) Does the graph of f have any points of inflexion? Justify your answer. 2

(d) Sketch the graph of the inverse function, f~!. State the asymptotes and
domain of f7. 3

14. (o) Find an equation of the plane 7x, containing the points A(1, 0, 3),

B(0, 2,-1) and C(1, 1, 0). 4
Calculate the size of the acute angle between &, and the plane 7, with
equation x + y—z = 0. 3

(b} Find the point of intersection of plane 7, and the line

x~11 y—15 z-12

4 5 2

[Turn over for Questions 15 and 16 on Page four
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15. (a)
(b)

16. (a)
(b)
(¢)
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A mathematical biologist believes that the differential equation

xEJ—J—Sy:x‘* models a process. Find the general solution of the
x

differential equation.

Given that y = 2 when x = 1, find the particular solution, expressing ¥ in
terms of x.

The biologist subsequently decides that a better model is given by the
X d
equation y—ji— 3 =x",
dx

Given that ¥ = 2 when x = 1, obtain y in terms of x.

Obtain the sum of the series 8+ 11+ 14+ ...+ 56.

A geometric sequence of positive terms has first term 2, and the sum of
the first three terms is 266. Calculate the common ratio.

An arithmetic sequence, 4, has first term @ and common difference 2,
and a geometric sequence, B, has first term g and common ratio 2. The
first four terms of each sequence have the same sum. Obtain the value
of a.

Obtain the smallest value of # such that the sum to n terms for sequence
B is more than twice the sum to n terms for sequence 4.

[END OF QUESTION PAPER]
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