

X100/701

NATIONAL
QUALIFICATIONS
2003

WEDNESDAY, 21 MAY
1.00 PM – 4.00 PM

MATHEMATICS
ADVANCED HIGHER

Read carefully

1. Calculators may be used in this paper.
2. There are five Sections in this paper.

Section A assesses the compulsory units Mathematics 1 and 2
Section B assesses the optional unit Mathematics 3
Section C assesses the optional unit Statistics 1
Section D assesses the optional unit Numerical Analysis 1
Section E assesses the optional unit Mechanics 1.

Candidates must attempt Section A (Mathematics 1 and 2) and one of the following Sections:

Section B (Mathematics 3)
Section C (Statistics 1)
Section D (Numerical Analysis 1)
Section E (Mechanics 1).

3. **Candidates must use a separate answer book for each Section.** Take care to show clearly the optional section chosen. On the front of the answer book, in the top right hand corner, write B, C, D or E.
4. A booklet of Mathematical Formulae and Statistical Tables is supplied for all candidates. It contains Numerical Analysis formulae and Statistical formulae and tables.
5. **Full credit will be given only where the solution contains appropriate working.**

Section A (Mathematics 1 and 2)

All candidates should attempt this Section.

Marks

Answer all the questions.

A1. (a) Given $f(x) = x(1+x)^{10}$, obtain $f'(x)$ and simplify your answer. 3

(b) Given $y = 3^x$, use logarithmic differentiation to obtain $\frac{dy}{dx}$ in terms of x . 3

A2. Given that $u_k = 11 - 2k$, ($k \geq 1$), obtain a formula for $S_n = \sum_{k=1}^n u_k$. 3
Find the values of n for which $S_n = 21$. 2

A3. The equation $y^3 + 3xy = 3x^2 - 5$ defines a curve passing through the point $A(2, 1)$. Obtain an equation for the tangent to the curve at A . 4

A4. Identify the locus in the complex plane given by $|z + i| = 2$. 3

A5. Use the substitution $x = 1 + \sin \theta$ to evaluate $\int_0^{\pi/2} \frac{\cos \theta}{(1 + \sin \theta)^3} d\theta$. 5

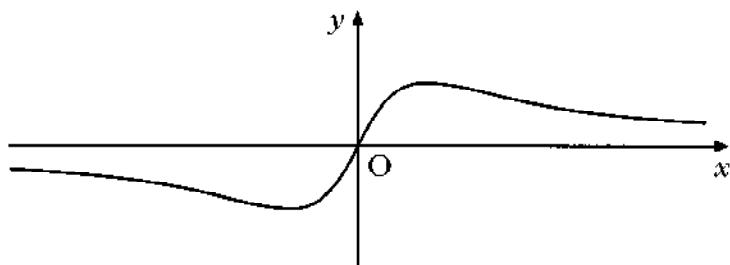
A6. Use elementary row operations to reduce the following system of equations to upper triangular form 2

$$\begin{array}{rcl} x + y + 3z & = & 1 \\ 3x + ay + z & = & 1 \\ x + y + z & = & -1. \end{array}$$

Hence express x , y and z in terms of the parameter a . 2

Explain what happens when $a = 3$. 2

A7.



The diagram shows the shape of the graph of $y = \frac{x}{1+x^2}$. Obtain the stationary points of the graph. 4

Sketch the graph of $y = \left| \frac{x}{1+x^2} \right|$ and identify its three critical points. 3

A8. Given that $p(n) = n^2 + n$, where n is a positive integer, consider the statements:

A $p(n)$ is always even
 B $p(n)$ is always a multiple of 3.

For each statement, prove it if it is true or, otherwise, disprove it.

4

A9. Given that $w = \cos \theta + i \sin \theta$, show that $\frac{1}{w} = \cos \theta - i \sin \theta$.

1

Use de Moivre's theorem to prove $w^k + w^{-k} = 2\cos k\theta$, where k is a natural number.

3

Expand $(w + w^{-1})^4$ by the binomial theorem and hence show that

$$\cos^4 \theta = \frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}.$$

5

A10. Define $I_n = \int_0^1 x^n e^{-x} dx$ for $n \geq 1$.

(a) Use integration by parts to obtain the value of $I_1 = \int_0^1 x e^{-x} dx$.

3

(b) Similarly, show that $I_n = nI_{n-1} - e^{-1}$ for $n \geq 2$.

4

(c) Evaluate I_3 .

3

A11. The volume $V(t)$ of a cell at time t changes according to the law

$$\frac{dV}{dt} = V(10 - V) \quad \text{for } 0 < V < 10.$$

Show that

$$\frac{1}{10} \ln V - \frac{1}{10} \ln (10 - V) = t + C$$

for some constant C .

4

Given that $V(0) = 5$, show that

$$V(t) = \frac{10e^{10t}}{1 + e^{10t}}.$$

3

Obtain the limiting value of $V(t)$ as $t \rightarrow \infty$.

2

[END OF SECTION A]

Candidates should now attempt ONE of the following

Section B (Mathematics 3) on Page four

Section C (Statistics 1) on Pages five and six

Section D (Numerical Analysis 1) on Pages seven and eight

Section E (Mechanics 1) on Pages nine, ten and eleven.

Section B (Mathematics 3)

**ONLY candidates doing the course Mathematics 1, 2 and 3
should attempt this Section.**

Marks

Answer all the questions.

**Answer these questions in a separate answer book, showing clearly the
section chosen.**

B1. Find the point of intersection of the line

$$\frac{x-3}{4} = \frac{y-2}{-1} = \frac{z+1}{2}$$

and the plane with equation $2x + y - z = 4$.

4

B2. The matrix A is such that $A^2 = 4A - 3I$ where I is the corresponding identity matrix. Find integers p and q such that

$$A^2 = pA + qI.$$

4

B3. A recurrence relation is defined by the formula

$$x_{n+1} = \frac{1}{2} \left\{ x_n + \frac{7}{x_n} \right\}.$$

Find the fixed points of this recurrence relation.

3

B4. Obtain the Maclaurin series for $f(x) = \sin^2 x$ up to the term in x^4 .
Hence write down a series for $\cos^2 x$ up to the term in x^4 .

4

1

B5. (a) Prove by induction that for all natural numbers $n \geq 1$

$$\sum_{r=1}^n 3(r^2 - r) = (n - 1)n(n + 1).$$

4

(b) Hence evaluate $\sum_{r=1}^{40} 3(r^2 - r)$.

2

B6. Solve the differential equation

$$\frac{d^2y}{dx^2} - 4 \frac{dy}{dx} + 4y = e^x,$$

given that $y = 2$ and $\frac{dy}{dx} = 1$, when $x = 0$.

10

[END OF SECTION B]

Section C (Statistics 1)

ONLY candidates doing the course Mathematics 1, 2 and Statistics 1 should attempt this Section.

Marks

Answer all the questions.

Answer these questions in a separate answer book, showing clearly the section chosen.

C1. A mammogram is used to screen women for breast cancer. A mammogram which indicates an abnormality in the breast tissue is termed positive. Over many years, it has been determined that

- (i) of all women screened, 1% have breast cancer,
- (ii) $P(\text{Mammogram is positive} \mid \text{woman has breast cancer}) = 0.9$, and
- (iii) $P(\text{Mammogram is negative} \mid \text{woman does not have breast cancer}) = 0.9$.

If a woman is screened and the mammogram is positive, find the probability that she actually has the disease.

5

C2. A building society manager discovered that documentation for the proportion $p = 0.25$ of mortgage agreements required amendments by senior staff before final processing. Following a training workshop for staff involved in creating the documentation, the manager took a random sample of 20 completed agreements and found that in 3 cases amendments had been required.

- (a) On the assumption that the training was ineffective, state the distribution and its parameters of the number of agreements requiring amendment, X , in random samples of 20.
- (b) Obtain $P(X \leq 3)$.

2

1

The manager believed that the training had been effective since only 15% of the sample of agreements following the training had required amendment.

- (c) Test the hypothesis $p = 0.25$, against the alternative $p < 0.25$. Indicate whether or not your conclusion supports the manager's belief.

3

C3. A biologist found a report which stated that the body temperature for a species of mammal was normally distributed with mean 104°F and standard deviation of 1.2°F . He wished to convert this information to degrees Celsius.

- (a) Given that $x^{\circ}\text{F}$ is equivalent to $y^{\circ}\text{C}$, where $y = \frac{5}{9}(x - 32)$, obtain the exact values of the mean and standard deviation of the mammal's body temperature in $^{\circ}\text{C}$.
- (b) Calculate the normal range for this animal's body temperature in $^{\circ}\text{C}$, ie the range of temperatures symmetrically placed around the mean which includes 95% of body temperatures.

4

2

[Turn over

		<i>Marks</i>
C4.	(a) Write down an expression for an approximate 95% confidence interval for a population proportion p .	2
	(b) The proportion of smokers, p , in a population is known to be of the order of 0.3.	
	(i) Show that the width of a 95% confidence interval for p , constructed from a sample of size n , will be of the order of $\frac{1.8}{\sqrt{n}}$.	2
	(ii) Find the value of n required to estimate the true proportion to within ± 0.05 with 95% confidence.	2
C5.	Bottles have burst strengths which are distributed with mean 502 psi and standard deviation 63 psi. A sample of 25 bottles with a new glass formulation was found to have a mean burst strength of 530 psi.	
	(a) Use a z -test with an appropriate critical region to investigate, at the 1% level of significance, whether or not the data provide evidence that mean burst strength has increased.	5
	(b) Calculate the p -value of the test and indicate how it can be used to confirm your decision in part (a).	2
	(c) Given that burst strength distributions are typically highly skewed, explain whether or not this would lead you to modify your earlier conclusion.	2

[END OF SECTION C]

Section D (Numerical Analysis 1)

ONLY candidates doing the course Mathematics 1, 2 and Numerical Analysis 1 should attempt this Section.

Marks

Answer all the questions.

Answer these questions in a separate answer book, showing clearly the section chosen.

D1. The following data are available for a function f :

x	1	4	6
$f(x)$	3.2182	4.0631	3.1278

Use the Lagrange interpolation formula to estimate $f(2.5)$.

3

D2. The function f is defined for $x > -1.5$ by $f(x) = \ln(3 + 2x)$.

The polynomial p is the Taylor polynomial of degree two for the function f near $x = 1$. Express $p(1 + h)$ in the form $c_0 + c_1h + c_2h^2$.

3

Use this polynomial to estimate the value of $\ln(5.4)$ to four decimal places.

2

State, with a reason, whether or not $f(x)$ is sensitive to small changes in x in the neighbourhood of $x = 1$.

1

D3. In the usual notation for forward differences of function values $f(x)$ tabulated at equally spaced values of x ,

$$\Delta f_i = f_{i+1} - f_i,$$

where $f_i = f(x_i)$ and $i = \dots, -2, -1, 0, 1, 2, \dots$

Show that $\Delta^3 f_0 = f_3 - 3f_2 + 3f_1 - f_0$.

2

If each value of f_i is subject to an error whose magnitude is less than or equal to ϵ , determine the magnitude of the maximum possible rounding error in $\Delta^3 f_0$.

1

When would this maximum possible error occur?

1

D4. The following data (accurate to the degree implied) are available for a function f :

x	0.3	0.6	0.9	1.2	1.5	1.8
$f(x)$	1.298	1.195	1.323	1.700	2.346	3.280

(a) Construct a difference table of third order for the data.

3

(b) Taking $x_0 = 0.3$, identify the value $\Delta^2 f_3$.

1

(c) State the degree of the polynomial which would best approximate this function.

1

(d) Using the Newton forward difference formula of degree three, and working to three decimal places, obtain an approximation to $f(0.63)$.

3

D5. (a) Using a Taylor polynomial of degree two, or otherwise, derive the trapezium rule over a single strip and the corresponding principal error term. 5

(b) Use the composite trapezium rule with four strips to obtain an estimate for the integral

$$\int_{\pi/4}^{\pi/2} x \sin x \, dx.$$

Perform the calculations using four decimal places. 3

(c) Given that for $f(x) = x \sin x$, $f''(x) = 2 \cos x - x \sin x$, and that $f'''(x)$ has no zero on the interval $[\frac{\pi}{4}, \frac{\pi}{2}]$, obtain an estimate of the maximum truncation error in the integral. 2

Hence state the value of the integral to a suitable accuracy. 1

[END OF SECTION D]

Section E (Mechanics 1)

**ONLY candidates doing the course Mathematics 1, 2 and
Mechanics 1 should attempt this Section.**

Marks

Answer all the questions.

**Answer these questions in a separate answer book, showing clearly the
section chosen.**

**Where appropriate, candidates should take the magnitude of the acceleration
due to gravity as 9.8 m s^{-2} .**

E1. (a) A particle moves on a straight line from the origin with initial velocity $Ui \text{ m s}^{-1}$ and uniform acceleration $ai \text{ m s}^{-2}$, where \mathbf{i} is the unit vector in the direction of motion.

Show, using calculus, that the distance $s(t)$ metres travelled by the particle in time t seconds is given by

$$s(t) = Ut + \frac{1}{2}at^2,$$

where t is measured from the start of the motion.

2

(b) A ball is dropped from the top of a building of height H metres. The ball falls vertically from rest to the ground in 6 seconds.

Ignoring the effect of air resistance, calculate the time taken for the ball to reach a point halfway down the building.

2

E2. An aircraft travels at 210 km/h in still air. The aircraft takes off from airfield A and lands at airfield B , where B is on a bearing of 050° from A .

Find the course the pilot must set in order to reach B if there is a steady wind blowing from the west at 30 km/h.

4

E3. A car of mass $m \text{ kg}$ is travelling along a straight road at a constant velocity of $12\mathbf{i} \text{ m s}^{-1}$, where \mathbf{i} is the unit vector in the direction of motion. The driver of the car applies the brakes which produce a retarding force $-2m\left(1 + \frac{t}{4}\right)\mathbf{i}$ newtons, where t is the time measured in seconds from the moment that the brakes are applied. The brakes are applied until the car is stationary.

Determine:

(a) the time taken for the car to stop;

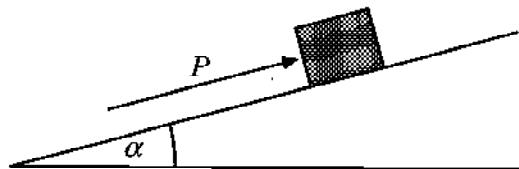
5

(b) the stopping distance.

2

[Turn over

E4. A block of wood of mass m kg is at rest on a plane inclined at α to the horizontal as shown below, where $\tan \alpha = \frac{3}{4}$. A force of magnitude P newtons acting on the block parallel to the inclined plane, up the line of greatest slope, is just sufficient to prevent the block from sliding **down** the plane. The coefficient of friction between the block and the plane is μ .



(a) Show that

$$P = \frac{mg}{5}(3 - 4\mu),$$

where g m s $^{-2}$ is the magnitude of the acceleration due to gravity.

3

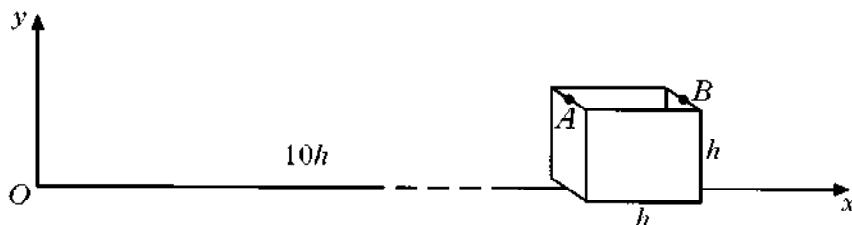
(b) The force acting on the block parallel to the inclined plane is increased to $2P$ newtons and the block is now on the point of moving **up** the plane. Show that

$$P = \frac{mg}{10}(3 + 4\mu),$$

and hence find the value of μ .

4

E5. A competition is held at a school gala. The object is to hit a golf ball from a point O on a horizontal playing field directly into an open box situated at a distance $10h$ metres away. The box is a cube with edges h metres long. A and B are the midpoints of the upper edges of the box as shown in the diagram in which AB is in the same plane as the x and y axes.



One of the pupils, Joanna, hits the ball from O , in the vertical plane OAB , imparting a speed of V m s $^{-1}$ to the ball with angle of projection 45° .

(a) Using the coordinate system shown in the diagram, show that the equation of the trajectory of the ball is

$$y = x - \frac{gx^2}{V^2},$$

where g m s $^{-2}$ is the magnitude of the acceleration due to gravity.

4

E5. (continued)

(b) Obtain an expression for V in terms of g and h , for the ball to hit A . 3

(c) Suppose that Joanna succeeds in hitting the ball into the box. Show that the speed of projection satisfies

$$\frac{10}{3} < \frac{V}{\sqrt{gh}} < \frac{11}{\sqrt{10}}. \quad \text{3}$$

[END OF SECTION E]

[END OF QUESTION PAPER]