



# Past Papers

# Int 2

# Chemistry

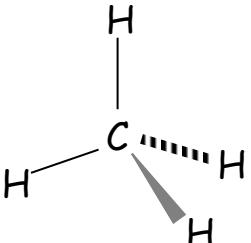
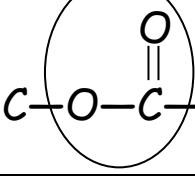
# 2008

# Marking Scheme

| Grade Awarded | Mark Required (/80) | %    | % candidates achieving grade |
|---------------|---------------------|------|------------------------------|
| A             | 57+                 | 71%  | 40.8%                        |
| B             | 49+                 | 61%  | 23.6%                        |
| C             | 41+                 | 51%  | 18.7%                        |
| D             | 37+                 | 46%  | 5.8%                         |
| No award      | <37                 | <46% | 11.0%                        |

| Section:      | Multiple Choice | Extended Answer |
|---------------|-----------------|-----------------|
| Average Mark: | 21.7 /30        | 31.5 /50        |

# 2008 Int2 Chemistry Marking Scheme



| MC Qu         | Answer        | % Pupils Correct | Reasoning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |               |          |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
|---------------|---------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|----------|----------|---------------|---------------|---------|-----------|-----|---|--|--|--|------|-------------|---------|---|--|--|--|--------|--------------|------|---|--|--|--|-----|---------------|-----|---|--|--|--|------|
| 1             | B             | 86               | <ul style="list-style-type: none"> <li><input checked="" type="checkbox"/> A Fastest: smallest particle size (powder) and highest concentration (<math>4 \text{ mol l}^{-1}</math>)</li> <li><input checked="" type="checkbox"/> B Slowest: largest particle size (ribbon) and lowest concentration (<math>2 \text{ mol l}^{-1}</math>)</li> <li><input checked="" type="checkbox"/> C Medium: smallest particle size (powder) and lowest concentration (<math>2 \text{ mol l}^{-1}</math>)</li> <li><input checked="" type="checkbox"/> D Medium: Largest particle size (ribbon) and highest concentration (<math>4 \text{ mol l}^{-1}</math>)</li> </ul>                                                                          |               |               |          |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
| 2             | C             | 67               | <ul style="list-style-type: none"> <li><input checked="" type="checkbox"/> A Ethanoic Acid is the solute (substance which is dissolved)</li> <li><input checked="" type="checkbox"/> B Saturated describes a solution where no more solute will dissolve in the solvent</li> <li><input checked="" type="checkbox"/> C Water is the solvent (the liquid which does the dissolving)</li> <li><input checked="" type="checkbox"/> D Vinegar is the solution (ethanoic acid dissolved in water)</li> </ul>                                                                                                                                                                                                                             |               |               |          |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
| 3             | C             | 95               | <ul style="list-style-type: none"> <li><input checked="" type="checkbox"/> A ammonia is a compound with the formula <math>\text{NH}_3</math></li> <li><input checked="" type="checkbox"/> B carbon dioxide is a compound with the formula <math>\text{CO}_2</math></li> <li><input checked="" type="checkbox"/> C fluorine is a diatomic element with the formula <math>\text{F}_2</math></li> <li><input checked="" type="checkbox"/> D methane is a compound with the formula <math>\text{CH}_4</math></li> </ul>                                                                                                                                                                                                                 |               |               |          |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
| 4             | D             | 81               | <ul style="list-style-type: none"> <li><input checked="" type="checkbox"/> A number of electrons = no of protons in neutral atoms</li> <li><input checked="" type="checkbox"/> B number of neutrons = mass number - atomic number</li> <li><input checked="" type="checkbox"/> C number of protons = number of electrons in a neutral atom</li> <li><input checked="" type="checkbox"/> D number of protons = number of electrons in a neutral atom</li> </ul>                                                                                                                                                                                                                                                                      |               |               |          |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
| 5             | D             | 95               | <ul style="list-style-type: none"> <li><input checked="" type="checkbox"/> A Nitrogen (group 5) has the electron arrangement 2,5</li> <li><input checked="" type="checkbox"/> B Oxygen (group 6) has the electron arrangement 2,6</li> <li><input checked="" type="checkbox"/> C Fluorine (group 7) has the electron arrangement 2,7</li> <li><input checked="" type="checkbox"/> D Neon (group 0) has the electron arrangement 2,8</li> </ul>                                                                                                                                                                                                                                                                                      |               |               |          |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
| 6             | A             | 76               | Charge on ion = number of protons - number of electrons = $19 - 18 = +1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |               |          |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
| 7             | A             | 70               | <ul style="list-style-type: none"> <li><input checked="" type="checkbox"/> A Metals have electrons which can jump from atom to atom</li> <li><input checked="" type="checkbox"/> B Diagram shows a covalent molecular substance</li> <li><input checked="" type="checkbox"/> C Diagram shows an ionic substance</li> <li><input checked="" type="checkbox"/> D Diagram shows a covalent network substance</li> </ul>                                                                                                                                                                                                                                                                                                                |               |               |          |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
| 8             | D             | 65               | Hydrocarbons burn in a plentiful supply of air to form carbon dioxide and water <ul style="list-style-type: none"> <li>• methane is an alkane</li> <li>• alkanes are hydrocarbons</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |               |          |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
| 9             | A             | 81               | $\text{gfm NH}_3 = (1 \times 14) + (3 \times 1) = 17 \text{ g}$<br>$\text{no. of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{1.7}{17} = 0.1 \text{ mol}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |          |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
| 10            | C             | 72               | <ul style="list-style-type: none"> <li><input checked="" type="checkbox"/> A Metallic substance: conducts when solid and liquid</li> <li><input checked="" type="checkbox"/> B Covalent substance: does not conduct when solid or liquid</li> <li><input checked="" type="checkbox"/> C Ionic Substance: Does not conduct when solid but conducts when liquid</li> <li><input checked="" type="checkbox"/> D Covalent Network: high melting point and does not conduct when solid or liquid</li> </ul>                                                                                                                                                                                                                              |               |               |          |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
| 11            | D             | 77               | <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Property</th> <th>Petroleum Gas</th> <th>Gasoline</th> <th>Kerosene</th> <th>Light gas Oil</th> <th>Heavy Gas Oil</th> <th>Residue</th> </tr> </thead> <tbody> <tr> <td>Viscosity</td> <td>Low</td> <td colspan="4" style="text-align: center;">↔</td> <td>High</td> </tr> <tr> <td>Evaporation</td> <td>Quickly</td> <td colspan="4" style="text-align: center;">↔</td> <td>Slowly</td> </tr> <tr> <td>Flammability</td> <td>High</td> <td colspan="4" style="text-align: center;">↔</td> <td>Low</td> </tr> <tr> <td>Boiling Point</td> <td>Low</td> <td colspan="4" style="text-align: center;">↔</td> <td>High</td> </tr> </tbody> </table> | Property      | Petroleum Gas | Gasoline | Kerosene | Light gas Oil | Heavy Gas Oil | Residue | Viscosity | Low | ↔ |  |  |  | High | Evaporation | Quickly | ↔ |  |  |  | Slowly | Flammability | High | ↔ |  |  |  | Low | Boiling Point | Low | ↔ |  |  |  | High |
| Property      | Petroleum Gas | Gasoline         | Kerosene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Light gas Oil | Heavy Gas Oil | Residue  |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
| Viscosity     | Low           | ↔                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |               | High     |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
| Evaporation   | Quickly       | ↔                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |               | Slowly   |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
| Flammability  | High          | ↔                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |               | Low      |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
| Boiling Point | Low           | ↔                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |               | High     |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |
| 12            | C             | 32               | <ul style="list-style-type: none"> <li><input checked="" type="checkbox"/> A Longest chain length incorrect (methyl side groups cannot be on Carbon no. 1)</li> <li><input checked="" type="checkbox"/> B Longest chain length incorrect (ethyl side groups cannot be on Carbon no. 2)</li> <li><input checked="" type="checkbox"/> C 2-methylbutane: methyl <math>-\text{CH}_3</math> group on carbon no. 2 of a 4 carbon main chain</li> <li><input checked="" type="checkbox"/> D Numbering system is incorrect as side group must have lowest number possible</li> </ul>                                                                                                                                                        |               |               |          |          |               |               |         |           |     |   |  |  |  |      |             |         |   |  |  |  |        |              |      |   |  |  |  |     |               |     |   |  |  |  |      |

| 13                                                | D                                                  | 67                                                                            | <p><input checked="" type="checkbox"/> A Cycloalkanes do not have a C=C double bond to decolourise bromine solution<br/> <input checked="" type="checkbox"/> B Cycloalkenes do not have the general formula <math>C_nH_{2n}</math><br/> <input checked="" type="checkbox"/> C Alkanes do not have a C=C double bond to decolourise bromine solution<br/> <input checked="" type="checkbox"/> D Alkenes have general formula <math>C_nH_{2n}</math> and C=C bond decolourises bromine solution</p>                                                                                                                                                                                                                       |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
|---------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|-----------------|----------------------------------------------|-------------------|---------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|-----------|----------------|-----------------------------------------------------------|
| 14                                                | C                                                  | 87                                                                            | <table border="1"> <tbody> <tr> <td><math>C_4H_6</math></td> <td><math>C_5H_8</math></td> <td><math>C_6H_{10}</math></td> </tr> <tr> <td colspan="3">Correct general formula: <math>C_nH_{2n-2}</math></td> </tr> <tr> <td>If <math>n=4</math><br/><math>2n-2 = (2 \times 4) - 2 = 8 - 2 = 6</math></td> <td>If <math>n=5</math><br/><math>2n-2 = (2 \times 5) - 2 = 10 - 2 = 8</math></td> <td>If <math>n=6</math><br/><math>2n-2 = (2 \times 6) - 2 = 12 - 2 = 10</math></td> </tr> </tbody> </table>                                                                                                                                                                                                                 | $C_4H_6$      | $C_5H_8$        | $C_6H_{10}$     | Correct general formula: $C_nH_{2n-2}$       |                   |                                                               | If $n=4$<br>$2n-2 = (2 \times 4) - 2 = 8 - 2 = 6$ | If $n=5$<br>$2n-2 = (2 \times 5) - 2 = 10 - 2 = 8$ | If $n=6$<br>$2n-2 = (2 \times 6) - 2 = 12 - 2 = 10$                           |           |                |                                                           |
| $C_4H_6$                                          | $C_5H_8$                                           | $C_6H_{10}$                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| Correct general formula: $C_nH_{2n-2}$            |                                                    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| If $n=4$<br>$2n-2 = (2 \times 4) - 2 = 8 - 2 = 6$ | If $n=5$<br>$2n-2 = (2 \times 5) - 2 = 10 - 2 = 8$ | If $n=6$<br>$2n-2 = (2 \times 6) - 2 = 12 - 2 = 10$                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| 15                                                | B                                                  | 73                                                                            | <p><input checked="" type="checkbox"/> A Formula = <math>C_6H_{14}</math> ∵ different no. of carbons so not an isomer of heptane <math>C_7H_{16}</math><br/> <input checked="" type="checkbox"/> B Formula = <math>C_7H_{16}</math> ∵ an isomer of heptane <math>C_7H_{16}</math><br/> <input checked="" type="checkbox"/> C Formula = <math>C_7H_{14}</math> ∵ different no. of hydrogens so not an isomer of heptane <math>C_7H_{16}</math><br/> <input checked="" type="checkbox"/> D Formula = <math>C_7H_{14}</math> ∵ different no. of hydrogens so not an isomer of heptane <math>C_7H_{16}</math></p>                                                                                                           |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| 16                                                | A                                                  | 62                                                                            | <p><input checked="" type="checkbox"/> A Alcohol becomes toxic to yeast at ~13-15% alcohol<br/> <input checked="" type="checkbox"/> B Sweet wines still have sugar left when fermentation stops at ~13-15%<br/> <input checked="" type="checkbox"/> C Carbon dioxide is not harmful to yeast<br/> <input checked="" type="checkbox"/> D Alcohol solution is not saturated at ~13%</p>                                                                                                                                                                                                                                                                                                                                   |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| 17                                                | C                                                  | 72                                                                            | <p><input checked="" type="checkbox"/> A Addition reactions add a substance across a C=C double bond<br/> <input checked="" type="checkbox"/> B Dehydration reactions remove <math>H_2O</math> from a molecule leaving a C=C double bond<br/> <input checked="" type="checkbox"/> C Condensation reactions join molecules together with water removed at the join<br/> <input checked="" type="checkbox"/> D Neutralisation involves the reaction of <math>H^+</math> ions to become <math>H_2O</math> molecules</p>                                                                                                                                                                                                    |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| 18                                                | D                                                  | 70                                                                            | <table border="1"> <thead> <tr> <th>Letter</th> <th>Name of Process</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td>X</td> <td>Distillation</td> <td>Separation of compounds due to their different boiling points</td> </tr> <tr> <td>Y</td> <td>Cracking</td> <td>Breaking larger saturated hydrocarbons into smaller, unsaturated hydrocarbons</td> </tr> <tr> <td>Z</td> <td>Polymerisation</td> <td>Joining up small monomers together to form large polymers</td> </tr> </tbody> </table>                                                                                                                                                                                                               | Letter        | Name of Process | Description     | X                                            | Distillation      | Separation of compounds due to their different boiling points | Y                                                 | Cracking                                           | Breaking larger saturated hydrocarbons into smaller, unsaturated hydrocarbons | Z         | Polymerisation | Joining up small monomers together to form large polymers |
| Letter                                            | Name of Process                                    | Description                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| X                                                 | Distillation                                       | Separation of compounds due to their different boiling points                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| Y                                                 | Cracking                                           | Breaking larger saturated hydrocarbons into smaller, unsaturated hydrocarbons |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| Z                                                 | Polymerisation                                     | Joining up small monomers together to form large polymers                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| 19                                                | A                                                  | 59                                                                            | <p><input checked="" type="checkbox"/> A Amino acids contain both the <math>NH_2</math>- group and -COOH group<br/> <input checked="" type="checkbox"/> B Amino acids have a carboxyl -COOH group not an hydroxyl -OH group<br/> <input checked="" type="checkbox"/> C Amino acids only have one amine -NH<sub>2</sub> group<br/> <input checked="" type="checkbox"/> D Amino acids only have one carboxyl -COOH group</p>                                                                                                                                                                                                                                                                                              |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| 20                                                | C                                                  | 58                                                                            | <table border="1"> <thead> <tr> <th>Type of Lipid</th> <th>Saturation</th> <th>Melting Point</th> </tr> </thead> <tbody> <tr> <td>Fat</td> <td>more saturated</td> <td>higher</td> </tr> <tr> <td>Oil</td> <td>less saturated</td> <td>lower</td> </tr> </tbody> </table>                                                                                                                                                                                                                                                                                                                                                                                                                                               | Type of Lipid | Saturation      | Melting Point   | Fat                                          | more saturated    | higher                                                        | Oil                                               | less saturated                                     | lower                                                                         |           |                |                                                           |
| Type of Lipid                                     | Saturation                                         | Melting Point                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| Fat                                               | more saturated                                     | higher                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| Oil                                               | less saturated                                     | lower                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| 21                                                | B                                                  | 95                                                                            | <table border="1"> <thead> <tr> <th>Solution Type</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td>Acidic Solution</td> <td>Number of <math>H^+</math> ions &gt; Number of <math>OH^-</math> ions</td> </tr> <tr> <td>Neutral Solution</td> <td>Number of <math>H^+</math> ions = Number of <math>OH^-</math> ions</td> </tr> <tr> <td>Alkaline Solution</td> <td>Number of <math>H^+</math> ions &lt; Number of <math>OH^-</math> ions</td> </tr> </tbody> </table>                                                                                                                                                                                                                                           | Solution Type | Description     | Acidic Solution | Number of $H^+$ ions > Number of $OH^-$ ions | Neutral Solution  | Number of $H^+$ ions = Number of $OH^-$ ions                  | Alkaline Solution                                 | Number of $H^+$ ions < Number of $OH^-$ ions       |                                                                               |           |                |                                                           |
| Solution Type                                     | Description                                        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| Acidic Solution                                   | Number of $H^+$ ions > Number of $OH^-$ ions       |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| Neutral Solution                                  | Number of $H^+$ ions = Number of $OH^-$ ions       |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| Alkaline Solution                                 | Number of $H^+$ ions < Number of $OH^-$ ions       |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| 22                                                | C                                                  | 84                                                                            | <p><input checked="" type="checkbox"/> A non-metal oxides like carbon dioxide dissolve to form acids<br/> <input checked="" type="checkbox"/> B copper (II) oxide is insoluble in water (p8 of data booklet)<br/> <input checked="" type="checkbox"/> C metal oxides like potassium oxide dissolve to form alkalis<br/> <input checked="" type="checkbox"/> D non-metal oxides like nitrogen dioxide dissolve to form acids</p>                                                                                                                                                                                                                                                                                         |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| 23                                                | B                                                  | 47                                                                            | <p><input checked="" type="checkbox"/> A no. of mol = volume <math>\times</math> concentration = <math>0.25\text{litres} \times 0.4\text{mol l}^{-1} = 0.1\text{ mol}</math><br/> <input checked="" type="checkbox"/> B no. of mol = volume <math>\times</math> concentration = <math>0.25\text{litres} \times 4\text{mol l}^{-1} = 1.0\text{ mol}</math><br/> <input checked="" type="checkbox"/> C no. of mol = volume <math>\times</math> concentration = <math>0.2\text{litres} \times 0.5\text{mol l}^{-1} = 0.1\text{ mol}</math><br/> <input checked="" type="checkbox"/> D no. of mol = volume <math>\times</math> concentration = <math>0.2\text{litres} \times 1\text{mol l}^{-1} = 0.2\text{ mol}</math></p> |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| 24                                                | A                                                  | 56                                                                            | <table border="1"> <thead> <tr> <th>Solution</th> <th>Type</th> <th>pH</th> <th>Reaction with Magnesium</th> </tr> </thead> <tbody> <tr> <td>Hydrochloric acid</td> <td>strong acid</td> <td>lower</td> <td>faster</td> </tr> <tr> <td>Ethanoic acid</td> <td>weak acid</td> <td>higher</td> <td>slower</td> </tr> </tbody> </table>                                                                                                                                                                                                                                                                                                                                                                                    | Solution      | Type            | pH              | Reaction with Magnesium                      | Hydrochloric acid | strong acid                                                   | lower                                             | faster                                             | Ethanoic acid                                                                 | weak acid | higher         | slower                                                    |
| Solution                                          | Type                                               | pH                                                                            | Reaction with Magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| Hydrochloric acid                                 | strong acid                                        | lower                                                                         | faster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |
| Ethanoic acid                                     | weak acid                                          | higher                                                                        | slower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                 |                 |                                              |                   |                                                               |                                                   |                                                    |                                                                               |           |                |                                                           |

|                                            |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |      |      |     |        |
|--------------------------------------------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------|------|-----|--------|
| 25                                         | A    | 95   | <input checked="" type="checkbox"/> A burns with a pop ∵ hydrogen gas<br><input checked="" type="checkbox"/> B relights a glowing splint ∵ oxygen gas<br><input checked="" type="checkbox"/> C turns damp pH paper red ∵ sulphur dioxide/nitrogen dioxide/carbon dioxide<br><input checked="" type="checkbox"/> D turns lime water milky ∵ carbon dioxide gas                                                                                                                                |                                            |      |      |     |        |
| 26                                         | D    | 61   | <input checked="" type="checkbox"/> A Electrons travel through the wires not the solution<br><input checked="" type="checkbox"/> B Electrons travel through the wires not the solution<br><input checked="" type="checkbox"/> C Electrons flow from the higher metal (zinc) to the lower metal (tin)<br><input checked="" type="checkbox"/> D Electrons flow through the wires from the higher metal zinc to the lower tin                                                                   |                                            |      |      |     |        |
| 27                                         | D    | 74   | <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td style="padding: 2px;">Order of metals in electrochemical series:</td> <td style="padding: 2px;">Zinc</td> <td style="padding: 2px;">Iron</td> <td style="padding: 2px;">Tin</td> <td style="padding: 2px;">Copper</td> </tr> </table> <p>Copper is the closest metal to silver in the electrochemical series<br/>       • Smallest voltage is obtained from the closest pairing</p>                       | Order of metals in electrochemical series: | Zinc | Iron | Tin | Copper |
| Order of metals in electrochemical series: | Zinc | Iron | Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Copper                                     |      |      |     |        |
| 28                                         | D    | 75   | <input checked="" type="checkbox"/> A Aluminium is too reactive to be found uncombined (made by molten electrolysis)<br><input checked="" type="checkbox"/> B Iron is too reactive to be found uncombined (made by heating ore with carbon)<br><input checked="" type="checkbox"/> C Lead is too reactive to be found uncombined (made by heating ore with carbon)<br><input checked="" type="checkbox"/> D Silver is unreactive and found uncombined in the Earth's crust                   |                                            |      |      |     |        |
| 29                                         | C    | 70   | <input checked="" type="checkbox"/> A $\text{H}^+$ ions are detected by universal indicator/pH paper turning red<br><input checked="" type="checkbox"/> B $\text{OH}^-$ ions are detected by ferroxyl indicator turning pink (+pH paper turning blue)<br><input checked="" type="checkbox"/> C $\text{Fe}^{2+}$ ions are detected by ferroxyl indicator turning blue<br><input checked="" type="checkbox"/> D Ferroxyl indicator and universal indicator do not detect $\text{Fe}^{3+}$ ions |                                            |      |      |     |        |
| 30                                         | D    | 70   | <input checked="" type="checkbox"/> A Painting provides a physical barrier to corrosion only<br><input checked="" type="checkbox"/> B Greasing provides a physical barrier to corrosion only<br><input checked="" type="checkbox"/> C Tin-plating has a physical barrier but tin does not sacrificially protect iron<br><input checked="" type="checkbox"/> D Galvanising has a physical barrier and zinc sacrificially protects iron                                                        |                                            |      |      |     |        |

# 2008 Int2 Chemistry Marking Scheme

| Long Qu          | Answer                                                                                                                              | Reasoning                                                                                                                                                                                                                                                                                                                                                                   |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------|---------|---------|---------|---------------------|
| 1a               | Transition metals                                                                                                                   | <table border="1"> <tr> <td>Name</td><td>Alkali Metals</td><td>Halogens</td><td>Noble gases</td><td>Transition Metals</td></tr> <tr> <td>Location</td><td>Group 1</td><td>Group 7</td><td>Group 0</td><td>Between Group 2 + 3</td></tr> </table>                                                                                                                            | Name             | Alkali Metals                                | Halogens         | Noble gases                                                                                                                                          | Transition Metals | Location                                   | Group 1 | Group 7 | Group 0 | Between Group 2 + 3 |
| Name             | Alkali Metals                                                                                                                       | Halogens                                                                                                                                                                                                                                                                                                                                                                    | Noble gases      | Transition Metals                            |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| Location         | Group 1                                                                                                                             | Group 7                                                                                                                                                                                                                                                                                                                                                                     | Group 0          | Between Group 2 + 3                          |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| 1b(i)            | <table border="1"> <tr> <td>29</td><td>34</td></tr> <tr> <td>29</td><td>36</td></tr> </table>                                       | 29                                                                                                                                                                                                                                                                                                                                                                          | 34               | 29                                           | 36               | No of protons = atomic number (lower number)<br>No of neutrons = mass number (upper no.) - atomic number (lower no.)                                 |                   |                                            |         |         |         |                     |
| 29               | 34                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                             |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| 29               | 36                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                             |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| 1b(ii)           | Isotopes                                                                                                                            | <table border="1"> <tr> <td>Isotopes</td><td>Same atomic number but different mass number</td></tr> <tr> <td></td><td>Same number of protons but different number of neutrons</td></tr> </table>                                                                                                                                                                            | Isotopes         | Same atomic number but different mass number |                  | Same number of protons but different number of neutrons                                                                                              |                   |                                            |         |         |         |                     |
| Isotopes         | Same atomic number but different mass number                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
|                  | Same number of protons but different number of neutrons                                                                             |                                                                                                                                                                                                                                                                                                                                                                             |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| 2a               | 46                                                                                                                                  | Problem Solving: Reading information from a graph                                                                                                                                                                                                                                                                                                                           |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| 2b(i)            | 9                                                                                                                                   | Solubility at 60°C = 46g per 100cm <sup>3</sup> and solubility at 30°C = 37g per 100cm <sup>3</sup><br>Mass of solid potassium chloride formed = 46g - 37g = 9g                                                                                                                                                                                                             |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| 2b(ii)           | Filtration                                                                                                                          | Solids can be separated from liquids by filtering. Solids remains in the filter paper (residue) and liquid goes through filter paper (filtrate)                                                                                                                                                                                                                             |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| 3a               | $4\text{N}_2\text{O} + \text{CH}_4 \downarrow 4\text{N}_2 + \text{CO}_2 + 2\text{H}_2\text{O}$                                      | $4\text{N}_2\text{O} + \text{CH}_4 \longrightarrow 4\text{N}_2 + \text{CO}_2 + 2\text{H}_2\text{O}$                                                                                                                                                                                                                                                                         |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| 3b               | Catalyst in different state from reactants                                                                                          | <table border="1"> <tr> <th>Type of Catalyst</th><th>Definition</th></tr> <tr> <td>Homogeneous</td><td>Catalyst in same state as reactants</td></tr> <tr> <td>Heterogeneous</td><td>Catalyst in different state from reactants</td></tr> </table>                                                                                                                           | Type of Catalyst | Definition                                   | Homogeneous      | Catalyst in same state as reactants                                                                                                                  | Heterogeneous     | Catalyst in different state from reactants |         |         |         |                     |
| Type of Catalyst | Definition                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                             |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| Homogeneous      | Catalyst in same state as reactants                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| Heterogeneous    | Catalyst in different state from reactants                                                                                          |                                                                                                                                                                                                                                                                                                                                                                             |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| 3c               | Products desorb from catalyst surface                                                                                               | Once the chemical reaction has taken place, the catalyst must release the products to allow next reaction to take place on the surface. <ul style="list-style-type: none"> <li>catalyst remains chemically unchanged throughout.</li> </ul>                                                                                                                                 |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| 3d               | Poisons the catalyst                                                                                                                | Catalysts get poisoned and stop working as the active sites on the catalyst surface get blocked up and this stops the reactants from adsorbing the catalyst surface.                                                                                                                                                                                                        |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| 4a               | Compound breaks down to elements by passing electricity through it                                                                  | Electrolysis used d.c. electricity to provide the energy to break compounds down into its constituent elements                                                                                                                                                                                                                                                              |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| 4b               | Direction of electron flow remains the same                                                                                         | D.C. electricity has a single direction of electron flow which means a constant positive and negative electrode. <ul style="list-style-type: none"> <li>Positive ions (usually metal ions) move to the negative electrode and pick electrons to become atoms</li> <li>Negative ions move to the positive electrode to lose electrons and become an element again</li> </ul> |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| 4c(i)            | <table border="1"> <tr> <td>positive</td><td>negative</td></tr> <tr> <td>Bubbles of gas</td><td>Brown solid made</td></tr> </table> | positive                                                                                                                                                                                                                                                                                                                                                                    | negative         | Bubbles of gas                               | Brown solid made | Positive electrode: $2\text{Cl}^- \rightarrow \text{Cl}_2 + 2\text{e}^-$<br>Negative electrode: $\text{Cu}^{2+} + 2\text{e}^- \rightarrow \text{Cu}$ |                   |                                            |         |         |         |                     |
| positive         | negative                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                             |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| Bubbles of gas   | Brown solid made                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                             |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |
| 4c(ii)           | Gas has distinctive chlorine smell (from swimming baths)                                                                            | Chlorine gas has a very distinctive smell, recognisable from the swimming baths <ul style="list-style-type: none"> <li>Gas must be carefully wafted over your nose so not to breathe in too much of it.</li> <li>Chlorine can be detected because it bleaches blue litmus paper.</li> </ul>                                                                                 |                  |                                              |                  |                                                                                                                                                      |                   |                                            |         |         |         |                     |

| 5a        | tetrahedral                                                                                                            | CFC molecule has similar in shape to methane                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                          |               |               |               |                     |                          |                  |                                  |                         |                     |                     |   |   |   |  |
|-----------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------------|--------------------------|------------------|----------------------------------|-------------------------|---------------------|---------------------|---|---|---|--|
| 5b(i)     | 1 from:                                                                                                                | $\begin{array}{c} \text{F} & \text{F} \\ &   \\ \text{H} - \text{C} & - \text{C} - \text{H} \\ &   \\ & \text{F} & \text{F} \end{array}$<br>(1,1,2,2-tetrafluoroethane)                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \text{H} & \text{F} \\ &   \\ \text{F} - \text{C} & - \text{C} - \text{F} \\ &   \\ & \text{H} & \text{F} \end{array}$<br>(1,1,1,2-tetrafluoroethane)                                                                                                                                    |                                                                                                                                          |               |               |               |                     |                          |                  |                                  |                         |                     |                     |   |   |   |  |
| 5b(ii)    | chlorine                                                                                                               | <table border="1" data-bbox="578 676 1427 788"> <tr> <td>Compound</td> <td><math>\text{CCl}_2\text{F}_2</math></td> <td>Replacement 1</td> <td>Replacement 2</td> <td>Replacement 3</td> </tr> <tr> <td>Formula</td> <td><math>\text{CCl}_2\text{F}_2</math></td> <td><math>\text{CHClF}_2</math></td> <td><math>\text{C}_2\text{H}_2\text{F}_4</math></td> <td><math>\text{CH}_2\text{F}_2</math></td> </tr> <tr> <td>No of Cl</td> <td>2</td> <td>1</td> <td>0</td> <td>0</td> </tr> </table> | Compound                                                                                                                                                                                                                                                                                                   | $\text{CCl}_2\text{F}_2$                                                                                                                 | Replacement 1 | Replacement 2 | Replacement 3 | Formula             | $\text{CCl}_2\text{F}_2$ | $\text{CHClF}_2$ | $\text{C}_2\text{H}_2\text{F}_4$ | $\text{CH}_2\text{F}_2$ | No of Cl            | 2                   | 1 | 0 | 0 |  |
| Compound  | $\text{CCl}_2\text{F}_2$                                                                                               | Replacement 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Replacement 2                                                                                                                                                                                                                                                                                              | Replacement 3                                                                                                                            |               |               |               |                     |                          |                  |                                  |                         |                     |                     |   |   |   |  |
| Formula   | $\text{CCl}_2\text{F}_2$                                                                                               | $\text{CHClF}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\text{C}_2\text{H}_2\text{F}_4$                                                                                                                                                                                                                                                                           | $\text{CH}_2\text{F}_2$                                                                                                                  |               |               |               |                     |                          |                  |                                  |                         |                     |                     |   |   |   |  |
| No of Cl  | 2                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                        |               |               |               |                     |                          |                  |                                  |                         |                     |                     |   |   |   |  |
| 5b(iii)   | Shorter atmospheric life                                                                                               | The atmospheric life is linked to the number of chlorine atoms within the CFC compound.                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |               |               |               |                     |                          |                  |                                  |                         |                     |                     |   |   |   |  |
| 6a        | hydroxyl                                                                                                               | The hydroxyl group is the $-\text{OH}$ group                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |               |               |               |                     |                          |                  |                                  |                         |                     |                     |   |   |   |  |
| 6b        | $\begin{array}{c} \text{H} & \text{OH} \\   &   \\ -\text{C} & -\text{C}- \\   &   \\ \text{H} & \text{H} \end{array}$ | $\begin{array}{c} \text{H} & \text{OH} \\   &   \\ \text{C} = \text{C} \\   &   \\ \text{H} & \text{H} \end{array}$<br>Monomer                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{H} & \text{OH} & \text{H} & \text{OH} & \text{H} & \text{OH} \\   &   &   &   &   &   \\ -\text{C} & -\text{C} & -\text{C} & -\text{C} & -\text{C} & -\text{C} \\   &   &   &   &   &   \\ \text{H} & \text{H} & \text{H} & \text{H} & \text{H} & \text{H} \end{array}$<br>Polymer | $\begin{array}{c} \text{H} & \text{OH} \\   &   \\ -\text{C} & -\text{C}- \\   &   \\ \text{H} & \text{H} \end{array}$<br>Repeating Unit |               |               |               |                     |                          |                  |                                  |                         |                     |                     |   |   |   |  |
| 6c        | Soluble in water                                                                                                       | Poly(ethenol) is soluble in water due to hydrogen bonding between the $-\text{OH}$ groups in poly(ethenol) and water                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |               |               |               |                     |                          |                  |                                  |                         |                     |                     |   |   |   |  |
| 7a        | man-made or not natural                                                                                                | Synthetic materials are made by the chemical industry and are not made from natural materials                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |               |               |               |                     |                          |                  |                                  |                         |                     |                     |   |   |   |  |
| 7b        |                                     | The ester link is formed during a condensation between a hydroxyl group and a carboxyl group. Water is removed as the groups join together.                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |               |               |               |                     |                          |                  |                                  |                         |                     |                     |   |   |   |  |
| 7c        | Glycerol                                                                                                               | Glycerol is also known as propane-1,2,3-triol                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{H} & \text{H} & \text{H} \\   &   &   \\ \text{H} - \text{C} & - \text{C} & - \text{C} - \text{H} \\   &   &   \\ \text{OH} & \text{OH} & \text{OH} \end{array}$                                                                                                                   |                                                                                                                                          |               |               |               |                     |                          |                  |                                  |                         |                     |                     |   |   |   |  |
| 8a        | $\text{C} = \text{C}$<br>Carbon - carbon double bond                                                                   | <table border="1" data-bbox="597 1814 1427 1958"> <thead> <tr> <th>Substance</th> <th colspan="3">Types of bond present</th> </tr> </thead> <tbody> <tr> <td>propane</td> <td><math>\text{C}-\text{H}</math></td> <td><math>\text{C}-\text{C}</math></td> <td></td> </tr> <tr> <td>butene</td> <td><math>\text{C}-\text{H}</math></td> <td><math>\text{C}-\text{C}</math></td> <td><math>\text{C}=\text{C}</math></td> </tr> </tbody> </table>                                                  | Substance                                                                                                                                                                                                                                                                                                  | Types of bond present                                                                                                                    |               |               | propane       | $\text{C}-\text{H}$ | $\text{C}-\text{C}$      |                  | butene                           | $\text{C}-\text{H}$     | $\text{C}-\text{C}$ | $\text{C}=\text{C}$ |   |   |   |  |
| Substance | Types of bond present                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |               |               |               |                     |                          |                  |                                  |                         |                     |                     |   |   |   |  |
| propane   | $\text{C}-\text{H}$                                                                                                    | $\text{C}-\text{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |               |               |               |                     |                          |                  |                                  |                         |                     |                     |   |   |   |  |
| butene    | $\text{C}-\text{H}$                                                                                                    | $\text{C}-\text{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\text{C}=\text{C}$                                                                                                                                                                                                                                                                                        |                                                                                                                                          |               |               |               |                     |                          |                  |                                  |                         |                     |                     |   |   |   |  |

|        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8b     | Absorption peaks at<br>a) 2800 - 3000<br>b) 3500 - 3700 |                                                                                                                                                                                                                                                                                                                                                                                      |
| 9a     | Glucose                                                 | $\text{glucose} \longrightarrow \text{starch} + \text{water}$ $n\text{C}_6\text{H}_{12}\text{O}_6 \longrightarrow (\text{C}_6\text{H}_{10}\text{O}_5)_n + n\text{H}_2\text{O}$                                                                                                                                                                                                       |
| 9b     | Iodine                                                  | Iodine solution turns blue-black in the presence of starch                                                                                                                                                                                                                                                                                                                           |
| 9c(i)  | Line graph showing:                                     | Correct Points (½mark) Line drawn (½mark)                                                                                                                                                                                                                                                                                                                                            |
| 9c(ii) | 80                                                      | $\text{rate} = \frac{1}{\text{time}}$ $\text{time} = \frac{1}{\text{rate}} = \frac{1}{0.0125} = 80\text{s}$                                                                                                                                                                                                                                                                          |
| 10a    | shape of protein changes                                | Denaturing: specific shape of the protein is changed permanently                                                                                                                                                                                                                                                                                                                     |
| 10b    | Use lime juice/acid                                     | Acid in lime juice changes the shape of the protein                                                                                                                                                                                                                                                                                                                                  |
| 10c    | Weak bonds                                              | The bonds holding the protein shape together must be weak as proteins can be denatured relatively easily.                                                                                                                                                                                                                                                                            |
| 10d    |                                                         | The hotter the temperature, the less time needed to denature the proteins and cook the protein.                                                                                                                                                                                                                                                                                      |
| 11a    | 1.62                                                    | $\text{gfm Al} = 27\text{g}$ $\text{no of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{0.135}{27} = 0.005 \text{ mol}$ $3\text{Ag}_2\text{S} + 2\text{Al} \longrightarrow 6\text{Ag} + \text{Al}_2\text{S}_3$ $\frac{2\text{mol}}{0.005\text{mol}} \quad \frac{6\text{mol}}{0.015\text{mol}}$ $\text{mass} = \text{no. of mol} \times \text{gfm} = 0.015 \times 108 = 1.62\text{g}$ |
| 11b    | Weigh clean beaker at start and end                     | The beaker will get lighter as the aluminium in the beaker is used up <ul style="list-style-type: none"> <li>aluminium metal atoms in the beaker turn into aluminium ions in the solution</li> </ul>                                                                                                                                                                                 |
| 12a    | Carbon dioxide                                          | Sodium hydrogencarbonate will react with acid to release carbon dioxide                                                                                                                                                                                                                                                                                                              |
| 12b    | $\text{C}_6\text{H}_8\text{O}_7$                        | $\text{HOOC-CH}_2\text{-C(OH)(COOH)-CH}_2\text{-COOH} \rightarrow \text{C}_6\text{H}_8\text{O}_7$                                                                                                                                                                                                                                                                                    |
| 12c    | weak                                                    | Partial dissociation of COOH bonds is found in weak acids only.                                                                                                                                                                                                                                                                                                                      |
| 13a    | Precipitation                                           | $\text{NaCO}_{3(\text{aq})} + \text{SrS}_{(\text{aq})} \rightarrow \text{Na}_2\text{S}_{(\text{aq})} + \text{SrCO}_{3(\text{s})}$ <p style="text-align: center;">precipitate</p>                                                                                                                                                                                                     |
| 13b    | Nitric acid                                             | $\text{ACID} + \text{METAL CARBONATE} \longrightarrow \text{SALT} + \text{WATER} + \text{CARBON DIOXIDE}$ $\text{nitric acid} + \text{strontium carbonate} \longrightarrow \text{strontium nitrate} + \text{water} + \text{carbon dioxide}$                                                                                                                                          |

|         |                             |                                                                                                           |                                    |                                 |                              |
|---------|-----------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------|------------------------------|
| 13c     | red colour                  | Flame Colours: page 6 of data book                                                                        |                                    |                                 |                              |
| 14a     | To complete the circuit     | Ions are able to move to complete the circuit                                                             |                                    |                                 |                              |
| 14b(i)  | Oxidation                   | Oxidation is Loss of Electrons (electrons after the arrow on right hand side)                             |                                    |                                 |                              |
| 14b(ii) | Aluminium hydroxide         | $\text{Al}^{3+}(\text{aq}) + 3\text{OH}^-(\text{aq}) \rightarrow \text{Al}^{3+}(\text{OH}^-)_3(\text{s})$ |                                    |                                 |                              |
| 15a     | $\text{KMnO}_4$             | Write down Formulae of ions                                                                               | Write down Valency below each ion  | Put in Cross-over Arrows        | Follow arrows to get formula |
|         |                             | $\text{K}^+ \text{MnO}_4^-$                                                                               | $\text{K}^+ \text{MnO}_4^-$<br>1 1 | $\text{K} \text{ MnO}_4$<br>1 1 | $\text{KMnO}_4$              |
| 15b     | Releases oxygen when heated | Potassium permanganate is an oxidising agent which releases oxygen when heated.                           |                                    |                                 |                              |
| 15c     | Powders react too fast      | Powders react much faster than lumps                                                                      |                                    |                                 |                              |