

Past Papers

Int 2

Chemistry

2011

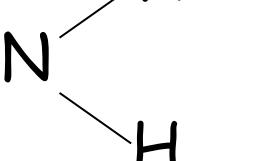
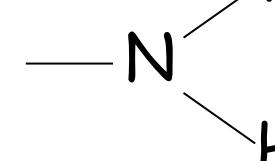
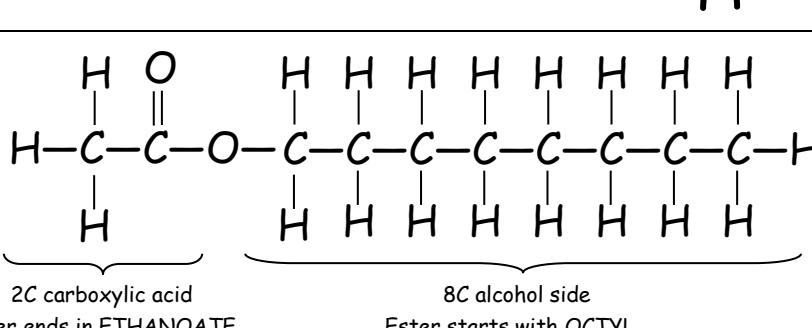
Marking Scheme

Grade Awarded	Mark Required (/80)		% candidates achieving grade
A	+51	63.8%+	36.9%
B	+43	53.8%+	22.5%
C	+36	45%+	18.6%
D	+32	40%+	8.4%
No award	<32	<40%	13.6%

Section:	Multiple Choice	Extended Answer
Average Mark:	19.8 /30	26.5 /50

2011 Int2 Chemistry Marking Scheme

MC Qu	Answer	% Pupils Correct	Reasoning																
1	B	71	<input checked="" type="checkbox"/> A aluminium is in group 3 and is not a transition metal <input checked="" type="checkbox"/> B cobalt is a transition metal and chlorine is a group 7 halogen <input checked="" type="checkbox"/> C oxygen is in group 6 and not a halogen (halogen atoms form halide ions) <input checked="" type="checkbox"/> D sodium is in group 1 and is not a transition metal																
2	D	71	<input checked="" type="checkbox"/> A magnesium hydroxide contains 3 elements (magnesium, hydrogen and oxygen) <input checked="" type="checkbox"/> B magnesium phosphate contains 3 elements (magnesium, phosphorus and oxygen) <input checked="" type="checkbox"/> C magnesium sulphite contains 3 elements (magnesium, sulphur and oxygen) <input checked="" type="checkbox"/> D magnesium nitride contains 2 elements (magnesium and nitrogen)																
3	A	84	<input checked="" type="checkbox"/> A increasing the volume of acid would not change the rate of reaction <input checked="" type="checkbox"/> B decreasing the size of marble chips would increase the rate of reaction <input checked="" type="checkbox"/> C decreasing the concentration of acid would decrease the rate of reaction <input checked="" type="checkbox"/> D increasing the temperature would increase the rate of reaction																
4	D	72	<table border="1"> <thead> <tr> <th>Particle</th><th>Location</th><th>Charge</th><th>Mass</th></tr> </thead> <tbody> <tr> <td>Proton</td><td>in nucleus</td><td>+1</td><td>1 amu</td></tr> <tr> <td>Neutron</td><td>in nucleus</td><td>0</td><td>1 amu</td></tr> <tr> <td>Electron</td><td>outside nucleus</td><td>-1</td><td>approx zero</td></tr> </tbody> </table>	Particle	Location	Charge	Mass	Proton	in nucleus	+1	1 amu	Neutron	in nucleus	0	1 amu	Electron	outside nucleus	-1	approx zero
Particle	Location	Charge	Mass																
Proton	in nucleus	+1	1 amu																
Neutron	in nucleus	0	1 amu																
Electron	outside nucleus	-1	approx zero																
5	A	88	Atomic number = number of protons = 26 Mass number = number of protons + number of neutrons = 26 + 30 = 56																
6	A	15	Air contains approx 20% oxygen, 79% nitrogen and 0.03% carbon dioxide. Burning magnesium will react with oxygen in air to form magnesium oxide. Excess burning magnesium will remove virtually all the oxygen from the air but this gas is not replaced as magnesium oxide is a solid. The 79% nitrogen in the air at the start becomes 98% of the remaining gas when the oxygen is removed.																
7	D	74	<input checked="" type="checkbox"/> A All atoms are free to vibrate, not just atoms in conducting materials like copper <input checked="" type="checkbox"/> B The ability to conduct needs more than atoms to be in close contact to work <input checked="" type="checkbox"/> C This electron arrangement is not the key factor in electrical conduction <input checked="" type="checkbox"/> D The conduction of electricity is dependent on the ability of electrons to jump from atom to atom																
8	C	54	<table border="1"> <tbody> <tr> <td>Chromium chloride has the formula</td><td>Chloride ions have the formula</td><td>3 chloride ions per chromium chloride</td><td>Chromium ion must have 3+ charge to balance charge</td></tr> <tr> <td>CrCl_3</td><td>Cl^-</td><td>$\text{Cr}^{n+}(\text{Cl}^-)_3$</td><td>$\text{Cr}^{3+}(\text{Cl}^-)_3$</td></tr> </tbody> </table>	Chromium chloride has the formula	Chloride ions have the formula	3 chloride ions per chromium chloride	Chromium ion must have 3+ charge to balance charge	CrCl_3	Cl^-	$\text{Cr}^{n+}(\text{Cl}^-)_3$	$\text{Cr}^{3+}(\text{Cl}^-)_3$								
Chromium chloride has the formula	Chloride ions have the formula	3 chloride ions per chromium chloride	Chromium ion must have 3+ charge to balance charge																
CrCl_3	Cl^-	$\text{Cr}^{n+}(\text{Cl}^-)_3$	$\text{Cr}^{3+}(\text{Cl}^-)_3$																
9	A	41	<input checked="" type="checkbox"/> A Combustion is the burning a substance in oxygen <input checked="" type="checkbox"/> B Condensation joins together two molecules removing water at the join point <input checked="" type="checkbox"/> C Dehydration removes water from a molecule leaving a C=C double bond behind <input checked="" type="checkbox"/> D Hydrolysis is breaking down a larger compound adding water across the break																
10	C	94	Fractional Distillation involves the separation of compounds due to their different boiling points. The compounds are collected by condensing the vapours back into liquids.																
11	C	32	<input checked="" type="checkbox"/> A CH_4 is methane and is the main constituent of natural gas <input checked="" type="checkbox"/> B C_3H_8 is propane and is a major constituent of LPG (liquefied petroleum gas) <input checked="" type="checkbox"/> C C_8H_{18} is octane and is found in petrol. <input checked="" type="checkbox"/> D $\text{C}_{14}\text{H}_{30}$ is most likely to be found in kerosene or diesel																
12	C	81	<input checked="" type="checkbox"/> A cyclobutane C_4H_8 is in a different homologous series from propane C_3H_8 <input checked="" type="checkbox"/> B but-2-ene C_4H_8 is in a different homologous series from propane C_3H_8 <input checked="" type="checkbox"/> C 2-methylbutane C_5H_{12} is in the same homologous series as propane C_3H_8 <input checked="" type="checkbox"/> D 2-methylbut-1-ene C_5H_{10} is in a different homologous series from propane C_3H_8																
13	B	78	<input checked="" type="checkbox"/> A but-2-ene has 4 carbons only <input checked="" type="checkbox"/> B pent-2-ene has 5 carbons and C=C double bond between C_2 and C_3 <input checked="" type="checkbox"/> C but-3-ene has 4 carbons only (and should be renumbered to but-2-ene) <input checked="" type="checkbox"/> D pent-3-ene is an incorrectly named compound as lowest number system has not been used																




14	B	40	<input checked="" type="checkbox"/> A ethene would only produce 1-bromoethane <input checked="" type="checkbox"/> B but-1-ene would produce 1-bromobutane and 2-bromobutane <input checked="" type="checkbox"/> C but-2-ene would only produce 2-bromobutane <input checked="" type="checkbox"/> D hex-3-ene would only produce 3-bromohexane
15	A	86	<input checked="" type="checkbox"/> A C=O group in middle of compound so reaction stays orange <input checked="" type="checkbox"/> B C=O group is on end of molecule so reaction mixture turns green <input checked="" type="checkbox"/> C C=O group is on end of molecule so reaction mixture turns green <input checked="" type="checkbox"/> D C=O group is on end of molecule so reaction mixture turns green
16	D	79	<input checked="" type="checkbox"/> A Isomers: same molecular formula but different structural formula <input checked="" type="checkbox"/> B Hydrocarbons: compounds which contain carbon and hydrogen only <input checked="" type="checkbox"/> C Alkanols: homologous series of alcohols with the general formula $C_nH_{2n+1}OH$ <input checked="" type="checkbox"/> D Carbohydrate: carbon, hydrogen and oxygen compounds with H:O in ratio 2:1
17	C	51	<input checked="" type="checkbox"/> A Amine groups are found in amino acids but not in proteins <input checked="" type="checkbox"/> B C=C double bonds are rarely found in protein molecules <input checked="" type="checkbox"/> C Peptide link: Found in all proteins and formed as amino acids join together <input checked="" type="checkbox"/> D Ester link: found in esters, polyesters, fats and oils but not in proteins
18	D	40	<input checked="" type="checkbox"/> A Sugars: not polymers but are monosaccharides $C_6H_{12}O_6$ or disaccharides $C_{12}H_{22}O_{11}$ <input checked="" type="checkbox"/> B Animal Fats: triglycerides with ester links between 3 fatty acids and glycerol <input checked="" type="checkbox"/> C Marine Oils: triglycerides with ester links between 3 fatty acids and glycerol <input checked="" type="checkbox"/> D Vegetable Proteins: polymers formed as amino acids join together
19	B	57	<input checked="" type="checkbox"/> A oils have low melting points as they are liquids at room temperature <input checked="" type="checkbox"/> B oils have low melting points and high degree of unsaturation (contain C=C bonds) <input checked="" type="checkbox"/> C oils have high degree of unsaturation as they have C=C double bonds <input checked="" type="checkbox"/> D oils have high degree of unsaturation as they have C=C double bonds
20	C	49	$ \begin{array}{c} \text{H} & \text{O} \\ & \parallel \\ \text{H}-\text{C}-\text{O}-\text{C}-\text{C}_{17}\text{H}_{35} \\ & \parallel \\ \text{H} & \text{O} \\ & \parallel \\ \text{H}-\text{C}-\text{O}-\text{C}-\text{C}_{17}\text{H}_{35} \\ & \parallel \\ \text{H} & \text{O} \\ & \parallel \\ \text{H}-\text{C}-\text{O}-\text{C}-\text{C}_{17}\text{H}_{35} \\ \text{Fat} \end{array} \xrightarrow{3\text{H}_2\text{O}} \begin{array}{c} \text{H} & \text{H} & \text{H} \\ & & \\ \text{H}-\text{C}-\text{C}-\text{C}-\text{H} \\ & & \\ \text{OH} & \text{OH} & \text{OH} \\ & & \text{glycerol} \\ + \\ \text{O} \\ 3 \times \text{H}-\text{O}-\text{C}-\text{C}_{17}\text{H}_{35} \\ 3 \text{ fatty acids} \end{array} $
21	A	60	<input checked="" type="checkbox"/> A Sodium oxide is a metal oxide \therefore dissolves in water to form an alkali (pH>7) <input checked="" type="checkbox"/> B Aluminium oxide is insoluble in water (p8 of data booklet) <input checked="" type="checkbox"/> C Sulphur dioxide is a non-metal oxide \therefore dissolves in water to form an acid (pH<7) <input checked="" type="checkbox"/> D Silver oxide is insoluble in water (p8 of data booklet)
22	B	74	<input checked="" type="checkbox"/> A H^+ ion concentration decreases as acid is diluted with water <input checked="" type="checkbox"/> B H^+ ion concentration decreases and pH of acid increases to pH=7 when diluted. <input checked="" type="checkbox"/> C pH of acid will increase up to pH=7 when diluted with water <input checked="" type="checkbox"/> D pH of acid will increase up to pH=7 when diluted with water
23	D	53	<input checked="" type="checkbox"/> A ammonia is a weak alkali \therefore not the highest pH <input checked="" type="checkbox"/> B pH of hydrochloric acid is below 7 \therefore not the highest pH <input checked="" type="checkbox"/> C pH of sodium chloride is equal to 7 \therefore not the highest pH <input checked="" type="checkbox"/> D sodium hydroxide is a strong alkali \therefore highest pH
24	A	88	<input checked="" type="checkbox"/> A calcium carbonate + hydrochloric acid \longrightarrow calcium chloride + water + carbon dioxide <input checked="" type="checkbox"/> B copper oxide + sulphuric acid \longrightarrow copper sulphate + water <input checked="" type="checkbox"/> C copper is not reactive enough to react with hydrochloric acid <input checked="" type="checkbox"/> D magnesium + sulphuric acid \longrightarrow magnesium sulphate + hydrogen

25	D	90	$\text{H}^+ + \text{NO}_3^- + \text{K}^+ + \text{OH}^- \rightarrow \text{K}^+ + \text{NO}_3^- + \text{H}_2\text{O}$ <p>Cancel out any spectator ions which appear on both sides</p> $\text{H}^+ + \cancel{\text{NO}_3^-} + \cancel{\text{K}^+} + \text{OH}^- \rightarrow \cancel{\text{K}^+} + \cancel{\text{NO}_3^-} + \text{H}_2\text{O}$ <p>Re-write equation omitting spectator ions</p> $\text{H}^+ + \text{OH}^- \rightarrow \text{H}_2\text{O}$				
26	D	85	<p><input checked="" type="checkbox"/> A copper is below zinc in electrochemical series ∴ no displacement reaction</p> <p><input checked="" type="checkbox"/> B gold is below zinc in electrochemical series ∴ no displacement reaction</p> <p><input checked="" type="checkbox"/> C iron is below zinc in electrochemical series ∴ no displacement reaction</p> <p><input checked="" type="checkbox"/> D Magnesium is above zinc in electrochemical series ∴ displacement reaction</p>				
27	B	63	<table border="1"> <tr> <td>Z is the most reactive as it is the only metal to react with water.</td> <td>Z comes last</td> </tr> <tr> <td>Y is the least reactive as it is the only metal not to react with acid</td> <td>Y comes first</td> </tr> </table>	Z is the most reactive as it is the only metal to react with water.	Z comes last	Y is the least reactive as it is the only metal not to react with acid	Y comes first
Z is the most reactive as it is the only metal to react with water.	Z comes last						
Y is the least reactive as it is the only metal not to react with acid	Y comes first						
28	D	56	<p><input checked="" type="checkbox"/> A Calcium is only made from calcium oxide by molten electrolysis</p> <p><input checked="" type="checkbox"/> B Copper can be made by heating copper oxide with carbon</p> <p><input checked="" type="checkbox"/> C Zinc can be made by heating zinc oxide with carbon</p> <p><input checked="" type="checkbox"/> D silver is unreactive and can be made by heating silver oxide alone</p>				
29	C	86	<p><input checked="" type="checkbox"/> A Both air <u>and</u> water are needed for rusting/corrosion to take place</p> <p><input checked="" type="checkbox"/> B Both air <u>and</u> water are needed for rusting/corrosion to take place</p> <p><input checked="" type="checkbox"/> C Both air <u>and</u> water are needed for rusting/corrosion to take place</p> <p><input checked="" type="checkbox"/> D Salt is not necessary for rusting to take place (salt speeds up rusting)</p>				
30	B	64	<p><input checked="" type="checkbox"/> A Scratched plastic coating does not speed up the rusting</p> <p><input checked="" type="checkbox"/> B Scratched zinc coating prevents the rusting of iron (zinc on iron is galvanising)</p> <p><input checked="" type="checkbox"/> C Scratched tin coating would speed up rusting as iron is higher than tin in ECS</p> <p><input checked="" type="checkbox"/> D Scratched paint coating does not speed up the rusting</p>				

2011 Int2 Chemistry Marking Scheme

Long Qu	Answer	Reasoning									
1a	Covalent Network	Covalent Network	Covalent as it does not conduct in any state and network due to high m.pt.								
	Ionic Lattice	Ionic Lattice	Ionic do not conduct when solid but do conduct when molten or in solution								
	Metallic Lattice	Metallic Lattice	Metallic substances conduct when solid								
	Discrete Covalent Molecular	Discrete Covalent Molecular	Covalent as it does not conduct in any state and molecular due to low m.pt.								
1b	SiO_2	Total number of Si shown = 8 Total number of O shown = 16 Ratio of Si:O = 8:16 = 1:2 \therefore Formula = SiO_2									
2a		Any three dimensional trigonal pyramidal shape:									
2b		Also Acceptable:									
3a	$2\text{H}_2\text{O}_2 \rightarrow \text{O}_2 + 2\text{H}_2\text{O}$	$2\text{H}_2\text{O}_2 \rightarrow \text{O}_2 + 2\text{H}_2\text{O}$									
3b	syringe or collection under water										
3c	Relights a glowing splint	<table border="1"> <tr> <td>Gas</td> <td>Hydrogen</td> <td>Oxygen</td> <td>Carbon Dioxide</td> </tr> <tr> <td>Gas Test</td> <td>Burns with a pop</td> <td>Relights glowing splint</td> <td>Turns lime water milky</td> </tr> </table>	Gas	Hydrogen	Oxygen	Carbon Dioxide	Gas Test	Burns with a pop	Relights glowing splint	Turns lime water milky	
Gas	Hydrogen	Oxygen	Carbon Dioxide								
Gas Test	Burns with a pop	Relights glowing splint	Turns lime water milky								
3d	0.6	$2\text{H}_2\text{O}_2 \rightarrow \text{O}_2 + 2\text{H}_2\text{O}$ $\begin{array}{ll} 34\text{g} & 12\text{litres} \\ 1.7\text{g} & 12\text{litres} \times \frac{1.7}{34} \\ & = 0.6\text{litres} \end{array}$									
4a(i)	In same state as reactants	<table border="1"> <tr> <td>Type of Catalyst</td> <td>Definition</td> </tr> <tr> <td>Homogeneous</td> <td>Catalyst in same state as reactants</td> </tr> <tr> <td>Heterogeneous</td> <td>Catalyst in different state from reactants</td> </tr> </table>	Type of Catalyst	Definition	Homogeneous	Catalyst in same state as reactants	Heterogeneous	Catalyst in different state from reactants			
Type of Catalyst	Definition										
Homogeneous	Catalyst in same state as reactants										
Heterogeneous	Catalyst in different state from reactants										
4a(ii)	RuCl_2	<p>Write down Valency below each element's symbol</p> <table style="margin-left: 100px;"> <tr> <td>Ru</td> <td>Cl</td> </tr> <tr> <td>2</td> <td>1</td> </tr> </table>	Ru	Cl	2	1	<p>Put in Cross-over Arrows</p> <table style="margin-left: 100px;"> <tr> <td>Ru</td> <td>Cl</td> </tr> <tr> <td>2</td> <td>1</td> </tr> </table> <p>Follow arrows to get formula</p> <p>RuCl_2</p>	Ru	Cl	2	1
Ru	Cl										
2	1										
Ru	Cl										
2	1										

10a(i)	$ \begin{array}{c} \text{H} & \text{COOH} \\ & \\ \text{C} = \text{C} \\ & \\ \text{H} & \text{H} \end{array} $	<table border="1"> <tr> <td> $\begin{array}{c} \text{H} & \text{COOH} \\ & \\ \text{C} = \text{C} \\ & \\ \text{H} & \text{H} \end{array}$ </td><td> $\begin{array}{c} \text{H} & \text{COOH} & \text{H} & \text{COOH} & \text{H} & \text{COOH} \\ & & & & & \\ \text{C} - & \text{C} - \\ & & & & & \\ \text{H} & \text{H} & \text{H} & \text{H} & \text{H} & \text{H} \end{array}$ </td><td> $\begin{array}{c} \text{H} & \text{COOH} \\ & \\ \text{C} - & \text{C} - \\ & \\ \text{H} & \text{H} \end{array}$ </td></tr> <tr> <td>Monomer</td><td>Polymer</td><td>Repeating Unit</td></tr> </table>	$ \begin{array}{c} \text{H} & \text{COOH} \\ & \\ \text{C} = \text{C} \\ & \\ \text{H} & \text{H} \end{array} $	$ \begin{array}{c} \text{H} & \text{COOH} & \text{H} & \text{COOH} & \text{H} & \text{COOH} \\ & & & & & \\ \text{C} - & \text{C} - \\ & & & & & \\ \text{H} & \text{H} & \text{H} & \text{H} & \text{H} & \text{H} \end{array} $	$ \begin{array}{c} \text{H} & \text{COOH} \\ & \\ \text{C} - & \text{C} - \\ & \\ \text{H} & \text{H} \end{array} $	Monomer	Polymer	Repeating Unit
$ \begin{array}{c} \text{H} & \text{COOH} \\ & \\ \text{C} = \text{C} \\ & \\ \text{H} & \text{H} \end{array} $	$ \begin{array}{c} \text{H} & \text{COOH} & \text{H} & \text{COOH} & \text{H} & \text{COOH} \\ & & & & & \\ \text{C} - & \text{C} - \\ & & & & & \\ \text{H} & \text{H} & \text{H} & \text{H} & \text{H} & \text{H} \end{array} $	$ \begin{array}{c} \text{H} & \text{COOH} \\ & \\ \text{C} - & \text{C} - \\ & \\ \text{H} & \text{H} \end{array} $						
Monomer	Polymer	Repeating Unit						
10a(ii)	polar covalent bonding	<p>The -OH bonds in both water and the polymer are polar bonds because the attraction for the bonded electrons is different between the atoms in the bond.</p> <p>(The question specifies that the bonding type is IN the water molecules.)</p>						
10b	partial dissociation or does not fully ionise	<p>Strong Acid: full dissociation of ions e.g. hydrochloric acid</p> <p>Weak Acid: partial dissociation of molecules into ions e.g. ethanoic acid</p>						
11a	Amine	<p>Functional Group of amines:</p>						
11b	Octyl ethanoate							
11c(i)	colourless → orange/red	<p>Colourless → Orange/Red</p> <p>Bromine added from burette reacts with Limonene in flask and flask stays colourless</p> <p>When Limonene has completely reacted with bromine, bromine remains in the flask and flask is orange/red.</p>						
11c(ii)	16.0	<p>Average volume always ignores rough (1st) titration. The 1st titration is used to work out roughly the volume the colour change takes place at so the following titration can be carried out extremely accurately.</p> $ \text{Average} = \frac{16.1 + 15.9}{2} = \frac{32.0}{2} = 16.0 \text{ cm}^3 $						
11c(iii)	0.2	<p>no. of mol Br_2 = volume × concentration = $0.016 \text{ litres} \times 0.5 \text{ mol l}^{-1} = 0.008 \text{ mol}$</p> $ \text{C}_{10}\text{H}_{16} + 2\text{Br}_2 \rightarrow \text{C}_{10}\text{H}_{16}\text{Br}_4 $ <table style="margin-left: 100px;"> <tr> <td>1mol</td> <td>2mol</td> </tr> <tr> <td>0.004mol</td> <td>0.008mol</td> </tr> </table> $ \text{concentration} = \frac{\text{no. of mol}}{\text{volume}} = \frac{0.004 \text{ mol}}{0.020 \text{ litres}} = 0.2 \text{ mol l}^{-1} $	1mol	2mol	0.004mol	0.008mol		
1mol	2mol							
0.004mol	0.008mol							

