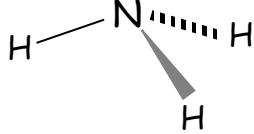
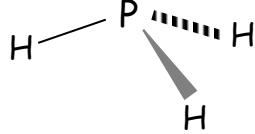


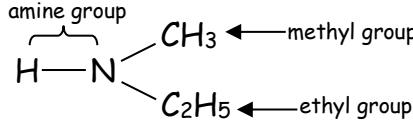
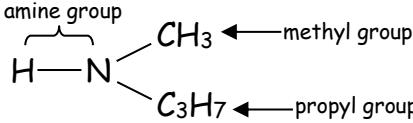
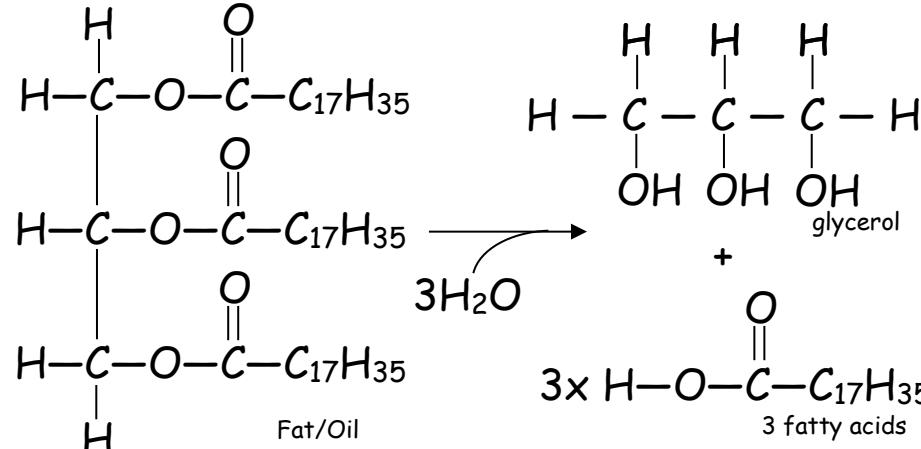
Past Papers

Int 2

Chemistry

2012

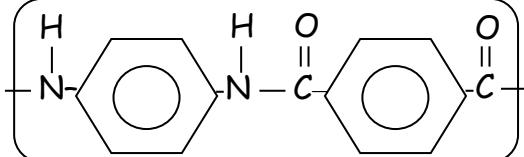
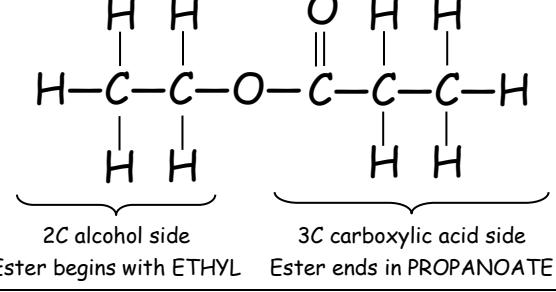
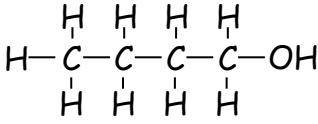
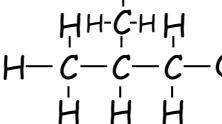
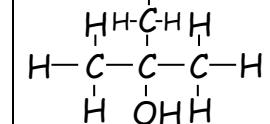
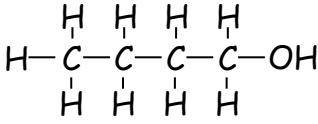
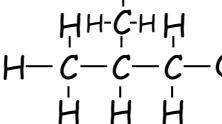
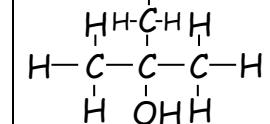
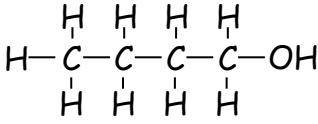
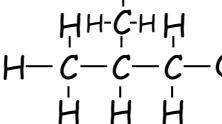
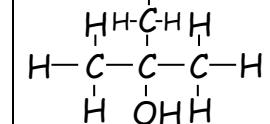


Marking Scheme

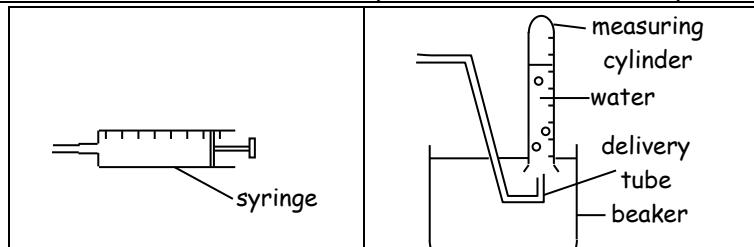



Grade Awarded	Mark Required (/80)		% candidates achieving grade
A	55+	69%+	35.9%
B	46+	57%+	21.9%
C	38+	47%+	19.3%
D	34+	42%+	6.8%
No award	<34	<42%	16.1%

Section:	Multiple Choice	Extended Answer
Average Mark:	19.5 /30	29.2 /50

2012 Int2 Chemistry Marking Scheme

Reasoning












MC Qu	Answer	% Pupils Correct																						
1	A	84	<p><input checked="" type="checkbox"/> A Group 0 elements are all monatomic, unreactive and gases.</p> <p><input type="checkbox"/> B Group 1 metals are solids and metallic bonding does not involve molecules</p> <p><input type="checkbox"/> C Group 2 metals are solids and metallic bonding does not involve molecules</p> <p><input type="checkbox"/> D Not all group 7 elements are gases and they are quite reactive elements</p>																					
2	B	95	<p><input type="checkbox"/> A magnesium powder reacts faster than magnesium ribbon</p> <p><input checked="" type="checkbox"/> B magnesium reacts faster than zinc and powder reacts faster than ribbon</p> <p><input type="checkbox"/> C magnesium reacts faster than zinc</p> <p><input type="checkbox"/> D magnesium reacts faster than zinc</p>																					
3	A	45	<p><input checked="" type="checkbox"/> A Endothermic reactions have products higher than reactants on the energy axis</p> <p><input type="checkbox"/> B this reaction is endothermic and energy is absorbed from the surroundings</p> <p><input type="checkbox"/> C Exothermic reactions have products lower than reactants on the energy axis</p> <p><input type="checkbox"/> D Products have more energy than reactants as they are higher on the energy axis</p>																					
4	D	81	<p><input type="checkbox"/> A lithium has a mass number of 7 and oxygen has a mass number of 16</p> <p><input type="checkbox"/> B lithium has an atomic number of 3 and oxygen has an atomic number of 8</p> <p><input type="checkbox"/> C lithium has 1 outer electron (group 1) and oxygen has 6 outer electrons (group 6)</p> <p><input checked="" type="checkbox"/> D Lithium (2,1) and oxygen (2,6) both have 2 occupied energy levels (electron shells)</p>																					
5	C	40	<p><input type="checkbox"/> A Fluorine forms negative ions as it is a non-metal.</p> <p><input type="checkbox"/> B lithium atoms (2,1) forms lithium Li^+ ions with electron arrangement of 2</p> <p><input checked="" type="checkbox"/> C sodium atoms (2,8,1) forms sodium Na^+ ions with electron arrangement of 2,8</p> <p><input type="checkbox"/> D Neon is a Noble Gas (group 0) and already has an electron arrangement of 2,8</p>																					
6	D	61	<p><input type="checkbox"/> A Calcium oxide is ionic as it is made from a metal and a non-metal</p> <p><input type="checkbox"/> B Chlorine has non-polar covalent bonds as it is an element</p> <p><input type="checkbox"/> C Sodium bromide is ionic as it is made from a metal and a non-metal</p> <p><input checked="" type="checkbox"/> D Water contains polar covalent bonds between the H and O atoms</p>																					
7	A	78	<p><input checked="" type="checkbox"/> A Lead (metal) and fluorine (non-metal) forms an ionic compound</p> <p><input type="checkbox"/> B Sulphur (non-metal) and oxygen (non-metal) forms a covalent compound</p> <p><input type="checkbox"/> C Carbon (non-metal) and nitrogen (non-metal) forms a covalent compound</p> <p><input type="checkbox"/> D Phosphorus (non-metal) and chlorine (non-metal) forms a covalent compound</p>																					
8	A	49	<p><input type="checkbox"/> A Carbon monoxide CO is a diatomic molecule (molecule contains 2 atoms)</p> <p><input type="checkbox"/> B Sulphur dioxide SO_2 is a triatomic molecule (molecule contains 3 atoms)</p> <p><input type="checkbox"/> C Nitrogen trihydride NH_3 is a tetratomic molecule (molecule contains 4 atoms)</p> <p><input checked="" type="checkbox"/> D Carbon tetrachloride CCl_4 is a pentatomic molecule (molecule contains 5 atoms)</p>																					
9	B	63	<p>Phosphorus and nitrogen are both in group 5 and NH_3 and PH_3 both have a trigonal pyramidal shape (Trigonal pyramidal was previously called pyramidal)</p> <div style="display: flex; justify-content: space-around; align-items: center;"> </div>																					
10	A	55	<p><input checked="" type="checkbox"/> A ions are locked together in a solid lattice so no conduction of electricity</p> <p><input type="checkbox"/> B ions move through ionic compounds as it conducts, not electrons</p> <p><input type="checkbox"/> C solid metals conduct electricity</p> <p><input type="checkbox"/> D ionic compounds always have positive and negative ions inside them</p>																					
11	B	68	<p><input checked="" type="checkbox"/> A $\text{C}_2\text{H}_6 + 3\frac{1}{2}\text{O}_2 \rightarrow 2\text{CO}_2 + 3\text{H}_2\text{O}$ \therefore 1 mole of C_2H_6 burns to form 2 moles of CO_2</p> <p><input checked="" type="checkbox"/> B $\text{C}_3\text{H}_8 + 5\text{O}_2 \rightarrow 3\text{CO}_2 + 4\text{H}_2\text{O}$ \therefore 1 mole of C_3H_8 burns to form 3 moles of CO_2</p> <p><input type="checkbox"/> C $\text{C}_4\text{H}_{10} + 6\frac{1}{2}\text{O}_2 \rightarrow 4\text{CO}_2 + 5\text{H}_2\text{O}$ \therefore 1 mole of C_4H_{10} burns to form 4 moles of CO_2</p> <p><input type="checkbox"/> D $\text{C}_5\text{H}_{12} + 8\text{O}_2 \rightarrow 5\text{CO}_2 + 6\text{H}_2\text{O}$ \therefore 1 mole of C_5H_{12} burns to form 5 moles of CO_2</p>																					
12	A	76	<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Property</th> <th>Petroleum Gas</th> <th>Gasoline</th> <th>Kerosene</th> <th>Light gas Oil</th> <th>Heavy Gas Oil</th> <th>Residue</th> </tr> </thead> <tbody> <tr> <td>Viscosity</td> <td>Low</td> <td colspan="4" style="text-align: center;">← →</td> <td>High</td> </tr> <tr> <td>Flammability</td> <td>High</td> <td colspan="4" style="text-align: center;">← →</td> <td>Low</td> </tr> </tbody> </table>	Property	Petroleum Gas	Gasoline	Kerosene	Light gas Oil	Heavy Gas Oil	Residue	Viscosity	Low	← →				High	Flammability	High	← →				Low
Property	Petroleum Gas	Gasoline	Kerosene	Light gas Oil	Heavy Gas Oil	Residue																		
Viscosity	Low	← →				High																		
Flammability	High	← →				Low																		


			ethylmethylamine	propylmethylamine											
13	D	78	 ethyl comes before methyl as it has more carbons	 propyl comes before methyl as it has more carbons											
14	C	48	All three carboxyl COOH groups will be neutralised by the alkali sodium hydroxide. The hydroxyl -OH group does not react with the alkali sodium hydroxide.												
15	A	70	$C_8H_{18} \xrightarrow{\text{cracking}} C_2H_4 + C_6H_{14}$												
16	D	47	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33.33%;">Area of Chemistry</td> <td style="width: 33.33%;">Answer</td> <td style="width: 33.33%;">Reasoning</td> </tr> <tr> <td>Type of Polymer</td> <td>condensation</td> <td>Water removed between -OH group and -COOH group</td> </tr> <tr> <td>Property</td> <td>thermoplastic</td> <td>Linear fibres with no cross links between fibres</td> </tr> </table>			Area of Chemistry	Answer	Reasoning	Type of Polymer	condensation	Water removed between -OH group and -COOH group	Property	thermoplastic	Linear fibres with no cross links between fibres	
Area of Chemistry	Answer	Reasoning													
Type of Polymer	condensation	Water removed between -OH group and -COOH group													
Property	thermoplastic	Linear fibres with no cross links between fibres													
17	C	84	<input checked="" type="checkbox"/> A some carbon in polymer would burn incompletely to form carbon monoxide <input checked="" type="checkbox"/> B carbon in polymer would burn completely to form carbon dioxide <input checked="" type="checkbox"/> C there is no chlorine ion polymer to form HCl <input checked="" type="checkbox"/> D Cyanide -CN groups in polymer would form HCN gas during burning of polymer												
18	D	68	<input checked="" type="checkbox"/> A PVC is an insoluble polymer <input checked="" type="checkbox"/> B Biopol is an insoluble polymer <input checked="" type="checkbox"/> C Polystyrene is an insoluble polymer <input checked="" type="checkbox"/> D Poly(ethenol) is an soluble polymer and suitable for use in a dishwasher tablet												
19	C	85													
20	C	71	Insulin is a protein made of amino acid monomers joined together												
21	B	66	Soluble metal oxides dissolve in water to form alkalis but zinc oxide is insoluble. When added to water, zinc oxide would not change the pH of water (pH=7).												
22	B	61	Neutralisation reactions involve the reaction of H ⁺ ions and OH ⁻ ions to form water.												
23	A	87	Electrochemical Series Order: Magnesium, zinc, iron, copper and silver (p7 data booklet) <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <td>Cell</td> <td>Mg-Ag</td> <td>Zn-Ag</td> <td>Fe-Ag</td> <td>Cu-Ag</td> </tr> <tr> <td>Voltage</td> <td>2.7V</td> <td>1.1V</td> <td>0.9V</td> <td>0.5V</td> </tr> </table>			Cell	Mg-Ag	Zn-Ag	Fe-Ag	Cu-Ag	Voltage	2.7V	1.1V	0.9V	0.5V
Cell	Mg-Ag	Zn-Ag	Fe-Ag	Cu-Ag											
Voltage	2.7V	1.1V	0.9V	0.5V											
24	C	58	<input checked="" type="checkbox"/> A air has no carbon in it so carbon dioxide could not be formed by sparking air <input checked="" type="checkbox"/> B air has no sulphur in it so sulphur dioxide could not be formed by sparking air <input checked="" type="checkbox"/> C air contains both nitrogen and oxygen. Sparking air forms nitrogen dioxide <input checked="" type="checkbox"/> D air has no chlorine in it so hydrogen chloride couldn't be formed by sparking air												

25	D	44	<input checked="" type="checkbox"/> A carbon does not react with hydrochloric acid to form an acid <input checked="" type="checkbox"/> B calcium oxide neutralises acid form salt and water but no gases are formed <input checked="" type="checkbox"/> C carbon dioxide gas is formed but CO_2 does not burn with a pop <input checked="" type="checkbox"/> D zinc reacts with acid to form hydrogen, which burns with a pop
26	B	64	<input checked="" type="checkbox"/> A Copper Sulphate salt is formed by neutralising sulphuric acid with bases containing copper <input checked="" type="checkbox"/> B Sodium oxide cannot be formed by the neutralisation of an acid (no acid contains the oxide ion) <input checked="" type="checkbox"/> C Magnesium Chloride salt is formed by neutralising hydrochloric acid with bases containing magnesium <input checked="" type="checkbox"/> D Calcium nitrate salt is formed by neutralising nitric acid with bases containing calcium
27	C	38	<input checked="" type="checkbox"/> A iron is lower than magnesium in ECS ∴ no displacement reaction occurs <input checked="" type="checkbox"/> B iron is lower than sodium in ECS ∴ no displacement reaction occurs <input checked="" type="checkbox"/> C iron is above than silver in ECS ∴ displacement reaction occurs <input checked="" type="checkbox"/> D iron cannot displace itself from solutions
28	D	66	<input checked="" type="checkbox"/> A At zinc electrode: $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^-$ ∴ zinc electrode decreases in mass <input checked="" type="checkbox"/> B At zinc electrode: $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^-$ ∴ zinc electrode decreases in mass <input checked="" type="checkbox"/> C At copper electrode: $Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$ ∴ copper electrode increases in mass <input checked="" type="checkbox"/> D copper electrode gets heavier as copper deposits on electrode, zinc electrode gets lighter as zinc atoms break off as Zn^{2+} ions into the solution
29	C	65	<input checked="" type="checkbox"/> A metal is below Zn and Mg in reactivity (metal between would need electrolysis) <input checked="" type="checkbox"/> B metal is below Mg and K in reactivity (metal between would need electrolysis) <input checked="" type="checkbox"/> C zinc is made by heating with carbon and copper can be made by heat alone <input checked="" type="checkbox"/> D metal is above copper and gold in reactivity (they can be made by heat alone)
30	D	61	<input checked="" type="checkbox"/> A iron nail would rust to protect copper as it is higher in electrochemical series <input checked="" type="checkbox"/> B iron nail would rust to protect tin as it is higher in electrochemical series <input checked="" type="checkbox"/> C iron nail would rust as cathodic protection is attaching to negative electrode <input checked="" type="checkbox"/> D iron nail would not rust: cathodic protection by attaching to negative electrode

2012 Int2 Chemistry Marking Scheme

Long Qu	Answer	Reasoning																	
1a	Covalent Network	SiO_2 contains two non-metals \therefore Covalent bonding in compound <ul style="list-style-type: none"> • Covalent network substances have high melting points • Covalent molecular substances have low melting & boiling points 																	
1b	Sb_2O_3	Write down Valency below each element's symbol <div style="display: flex; justify-content: space-around; align-items: center;"> <div style="text-align: center;"> Sb 3 </div> <div style="text-align: center;"> O 2 </div> <div style="text-align: center;"> Sb 3 </div> <div style="text-align: center;"> O 2 </div> </div> Put in Cross-over Arrows <div style="display: flex; justify-content: space-around; align-items: center;"> <div style="text-align: center;"> Sb 3 </div> <div style="text-align: center;"> O 2 </div> </div> Follow arrows to get formula Sb_2O_3																	
1c(i)	$\begin{array}{c} 11 \\ 5 \end{array} \text{B}$	Mass N° \rightarrow 11 Atomic N° \rightarrow 5	Mass number = protons + neutrons = 5+6 Atomic number = no of protons = 5																
1c(ii)	Isotopes	Isotopes have	same atomic number same no of protons	different mass number different no of neutrons															
2a(i)	2.75	$\text{Rate} = \frac{\Delta \text{quantity}}{\Delta \text{time}} = \frac{32 - 10}{10 - 2} = 2.75 \text{ l ms}^{-1}$																	
2a(ii)	4.5	Problem Solving: Reading values from a line graph																	
2b	$\text{NaN}_3 \rightarrow \text{Na} + \text{N}_2$	NaN_3 sodium azide Formula given in question	\rightarrow Na sodium metal Metal elements come as single atoms	$+$ N_2 nitrogen gas Nitrogen is a diatomic element															
2c	very reactive or explosive or flammable	The sodium metal produces is very reactive and could catch fire or even explode.																	
3a	<table border="1" style="display: inline-table; vertical-align: middle;"><tr><td>2</td></tr><tr><td>4</td></tr><tr><td>6</td></tr></table>	2	4	6	PPA 1.1 Question: Total volume should be the same in experiment														
2																			
4																			
6																			
3b	Answer should include:	Time measure until Blue/Black colour appears $\text{Rate} = 1/\text{TIME}$																	
3c	White tile under beaker or sharp colour change	PPA 1.1 Question: White tile makes colour change easier to observe Sudden colour change and end point of reaction can be easily judged																	
4a	Homogeneous	<table border="1" style="width: 100%; text-align: center;"> <thead> <tr> <th>Type of Catalyst</th> <th>Definition</th> </tr> </thead> <tbody> <tr> <td>Homogeneous</td> <td>Catalyst in same state as reactants</td> </tr> <tr> <td>Heterogeneous</td> <td>Catalyst in different state from reactants</td> </tr> </tbody> </table>			Type of Catalyst	Definition	Homogeneous	Catalyst in same state as reactants	Heterogeneous	Catalyst in different state from reactants									
Type of Catalyst	Definition																		
Homogeneous	Catalyst in same state as reactants																		
Heterogeneous	Catalyst in different state from reactants																		
4b	Increased surface area allows more collisions	The greater the surface area of a substance, the greater the surface on which the reaction can take place. \therefore greater the number of collisions \therefore greater reaction rate																	
4c	0.02	$\text{no. of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{1.8}{90} = 0.02 \text{ mol}$																	
5a	Answer to include:	Family with similar chemical properties and same general formula																	
5b(i)	Greater the carbon number, greater the energy released	<table border="1" style="width: 100%; text-align: center;"> <tr> <td>Alkanal</td> <td>Methanal</td> <td>Ethanal</td> <td>Propanal</td> <td>Butanal</td> </tr> <tr> <td>Chemical Formula</td> <td>CH_2O</td> <td>$\text{C}_2\text{H}_4\text{O}$</td> <td>$\text{C}_3\text{H}_6\text{O}$</td> <td>$\text{C}_4\text{H}_8\text{O}$</td> </tr> <tr> <td>Energy Released (kJ mol⁻¹)</td> <td>510</td> <td>1056</td> <td>1624</td> <td>2304</td> </tr> </table>			Alkanal	Methanal	Ethanal	Propanal	Butanal	Chemical Formula	CH_2O	$\text{C}_2\text{H}_4\text{O}$	$\text{C}_3\text{H}_6\text{O}$	$\text{C}_4\text{H}_8\text{O}$	Energy Released (kJ mol ⁻¹)	510	1056	1624	2304
Alkanal	Methanal	Ethanal	Propanal	Butanal															
Chemical Formula	CH_2O	$\text{C}_2\text{H}_4\text{O}$	$\text{C}_3\text{H}_6\text{O}$	$\text{C}_4\text{H}_8\text{O}$															
Energy Released (kJ mol ⁻¹)	510	1056	1624	2304															

		Alkanal	Methanal	Ethanal	Propanal	Butanal	Pentanal															
5b(ii)	2800 - 3200	Energy Released	510	1056	1624	2304	-															
		Difference		546	568	680	(486 - 896)															
		Prediction	-	-	-	-	2800 - 3200															
6a	very strong	Kevlar is very strong polymer used in bullet-proof vests																				
6b(i)	Answer to include:																					
6b(ii)	Amide link	<p>The structure of the amide link is</p> $\begin{array}{c} \text{O} & \text{H} \\ \parallel & \\ -\text{C} & -\text{N}- \end{array}$																				
7a	Hydration	Addition reactions involve the addition of a compound across a C=C double bond. Water can be added across a C=C double bond with -H added on one side and -OH added to the other side carbon.																				
7b	ethylpropanoate																					
7c	One from:	<table border="1"> <tbody> <tr> <td>Butan-1-ol $\text{C}_4\text{H}_9\text{OH}$</td> <td>2-methylpropan-1-ol $\text{C}_4\text{H}_9\text{OH}$</td> <td>2-methylpropan-2-ol $\text{C}_4\text{H}_9\text{OH}$</td> </tr> <tr> <td> </td> <td> </td> <td> </td> </tr> </tbody> </table>					Butan-1-ol $\text{C}_4\text{H}_9\text{OH}$	2-methylpropan-1-ol $\text{C}_4\text{H}_9\text{OH}$	2-methylpropan-2-ol $\text{C}_4\text{H}_9\text{OH}$													
Butan-1-ol $\text{C}_4\text{H}_9\text{OH}$	2-methylpropan-1-ol $\text{C}_4\text{H}_9\text{OH}$	2-methylpropan-2-ol $\text{C}_4\text{H}_9\text{OH}$																				
8a		<table border="1"> <thead> <tr> <th></th> <th>Saturated</th> <th>Reasoning</th> </tr> </thead> <tbody> <tr> <td>Bromine decolourises</td> <td></td> <td>Hydrocarbons which do not change bromine are saturated</td> </tr> <tr> <td>No change</td> <td></td> <td>Unsaturated C_6H_{12} is hexane and decolourises bromine solution</td> </tr> <tr> <td></td> <td>Unsaturated</td> <td>Saturated C_6H_{12} is cyclohexane and does not decolourise bromine</td> </tr> <tr> <td></td> <td></td> <td>Hydrocarbons which decolourises bromine quickly are unsaturated</td> </tr> </tbody> </table>							Saturated	Reasoning	Bromine decolourises		Hydrocarbons which do not change bromine are saturated	No change		Unsaturated C_6H_{12} is hexane and decolourises bromine solution		Unsaturated	Saturated C_6H_{12} is cyclohexane and does not decolourise bromine			Hydrocarbons which decolourises bromine quickly are unsaturated
	Saturated	Reasoning																				
Bromine decolourises		Hydrocarbons which do not change bromine are saturated																				
No change		Unsaturated C_6H_{12} is hexane and decolourises bromine solution																				
	Unsaturated	Saturated C_6H_{12} is cyclohexane and does not decolourise bromine																				
		Hydrocarbons which decolourises bromine quickly are unsaturated																				
8b	One from:	<p>PPA 2.1 Question:</p> <p>Be careful not to use a fume cupboard or don't breathe in. Wear Thiosulphate to inhale fumes in a well-ventilated area. (bromine) fumes gloves present</p>																				
8c	Cyclohexane	<p>C_6H_{12} is either hexene or cyclohexane. As hydrocarbon C is saturated, C must be cyclohexane and not hexene as hexene has a C=C double bond and is unsaturated.</p>																				
9a	Answer to include:	<p>Test water in beaker with iodine solution (but not contents of visking tubing). Presence of starch shown by iodine turning blue/black</p>																				
9b(i)	Glucose	$\text{starch} + \text{water} \longrightarrow \text{glucose}$ $(\text{C}_6\text{H}_{10}\text{O}_5)_n + \text{nH}_2\text{O} \longrightarrow \text{nC}_6\text{H}_{12}\text{O}_6$																				
9b(ii)	Acid	<p>Acid will catalyse the hydrolysis of starch to glucose</p>																				

10a	To absorb light	Chlorophyll is the chemical inside plant cells which absorbs the light energy needed to make glucose in plants.
10b	To make energy	glucose + oxygen \rightarrow carbon dioxide + water $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$
10c	Lowers the pH	Carbon dioxide dissolves in water to form an acidic solution which would react with the alkali in the pH=8.2 and lower the pH.
11a	Diagram showing:	
11b	calcium chloride	ACID + METAL CARBONATE \rightarrow SALT + WATER + CARBON DIOXIDE hydrochloric acid + calcium carbonate \rightarrow calcium chloride + water + carbon dioxide
11c	Line graph showing:	$\frac{1}{2}$ mark: labelling axes $\frac{1}{2}$ mark: correct scales $\frac{1}{2}$ mark: plotting points $\frac{1}{2}$ mark: drawing line
12a	Hydrogen	All acids contain H^+ ions which will be attracted to the negative electrode where they turn into hydrogen gas: $2H^{(aq)} + 2e^- \rightarrow H_2(g)$
12b	Weak acids do not fully dissociate	$\begin{array}{ccc} \text{ethanoic} & & \text{hydrogen} \\ \text{acid} & \rightleftharpoons & \text{ion} \\ & & + \\ & & \text{ethanoate} \\ & & \text{ion} \end{array}$ $\begin{array}{ccc} \text{H} & & \text{H} \\ & & \\ \text{H}-\text{C}-\text{C}=\text{O} & \rightleftharpoons & \text{H}^+ + \text{H}-\text{C}-\text{C}=\text{O} \\ & & \\ \text{H} & & \text{O}^- \end{array}$
12c	lower higher	Sulphuric acid H_2SO_4 has two H^+ ions on the formula but hydrochloric acid HCl has one H^+ ion in its formula. <ul style="list-style-type: none"> Sulphuric acid gives a lower pH than the same volume and concentration of HCl as there are more H^+ ions released into solution and this lowers the pH. As sulphuric acid will have more ions in the solution than HCl, it will have a higher electrical conductivity.
13a	precipitation	barium chloride + sodium sulphate \rightarrow barium sulphate + sodium chloride (soluble) (soluble) (insoluble) (soluble)
13b(i)	$Ba^{2+} + SO_4^{2-} \rightarrow Ba^{2+}SO_4^{2-}$	$Ba^{2+} + 2Cl^- + 2Na^+ + SO_4^{2-} \rightarrow Ba^{2+}SO_4^{2-(s)} + 2Na^+ + 2Cl^-$ Cancel out any spectator ions which appear on both sides $Ba^{2+} + \cancel{2Cl^-} + \cancel{2Na^+} + SO_4^{2-} \rightarrow Ba^{2+}SO_4^{2-(s)} + \cancel{2Na^+} + \cancel{2Cl^-}$ Re-write equation omitting spectator ions $Ba^{2+} + SO_4^{2-} \rightarrow Ba^{2+}SO_4^{2-(s)}$
13b(ii)	Spectator	Spectator ions are present in a reaction mixture but do not take part in a chemical reaction.
14a	Oxidised or Loses electrons	Metals atoms lose electrons during corrosion and this process can be called oxidation.

14b(i)	$Ag \rightarrow Ag^+ + e^-$	At the positive electrode silver atoms lose an electron to form silver Ag^+ ions.
14b(ii)	To supply the electrons to coat the spoon in silver	The negative terminal of a battery has electrons to give to Ag^+ ions in the solution and turn the Ag^+ ions into silver atoms by the equation: $Ag^{(aq)} + e^- \rightarrow Ag^{(s)}$
15a(i)	0.5	$\text{no. of mol} = \text{volume} \times \text{concentration}$ $= 0.25 \text{ litres} \times 2 \text{ mol l}^{-1}$ $= 0.5 \text{ mol}$
15a(ii)	40g	$Fe_2O_3 + 2H_3PO_4 \longrightarrow 2FePO_4 + 3H_2O$ $\begin{array}{ccc} 1\text{mol} & & 2\text{mol} \\ 0.25\text{mol} & & 0.5\text{mol} \end{array}$ $\text{gfm } Fe_2O_3 = (2 \times 56) + (3 \times 16) = 112 + 48 = 160\text{g}$ $\text{mass } Fe_2O_3 = \text{no. of mol} \times \text{gfm} = 0.25 \times 160 = 40\text{g}$
15b	Prevents water and/or oxygen getting to iron underneath.	Both air/oxygen and water are required for corrosion to take place. A barrier to air and/or water getting to the metal underneath will prevent corrosion.