

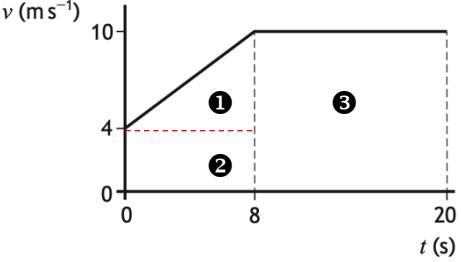
JABstem

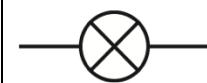
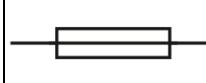
Not to be shared without copyright holder's permission

Past Papers

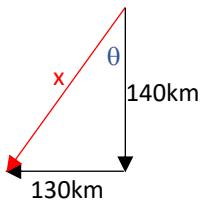
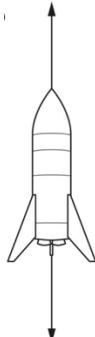
Nat 5

Physics

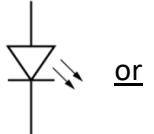

2022

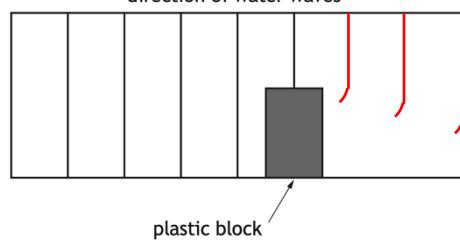
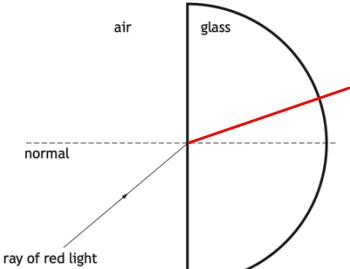


Marking Scheme

Grade Awarded	Mark Required		% candidates achieving grade
	/125	%	
A	63+	63%	34.9%
B	51+	51%	20.9%
C	40+	40%	18.2%
D	28+	28%	14.5%
No award	<28	<28%	11.5%



Section:	Multiple Choice	Extended Answer	Assignment
Average Mark:	14.7	/25	38.4 /75 No Assignment in 2022

2022 Nat5 Physics Marking Scheme


Question	Answer	% Correct	Physics Covered											
1	E	61	Vector Quantity	force	velocity	displacement	acceleration	weight						
			Scalar Quantity	energy	speed	distance	time	mass						
2	C	73	<input checked="" type="checkbox"/> A Toy car must have velocity above zero at point P <input checked="" type="checkbox"/> B Toy car must have higher velocity at point Q than it had at point P <input checked="" type="checkbox"/> C Average speed of 1 m s^{-1} and 3 m s^{-1} is 2 m s^{-1} <input checked="" type="checkbox"/> D Average speed of 2 m s^{-1} and 3 m s^{-1} would be 2.5 m s^{-1} <input checked="" type="checkbox"/> E Average speed must be between 2 m s^{-1} and 3 m s^{-1}											
3	D	63	<table border="1"> <tr> <td>Area ①</td> <td>Area ②</td> <td>Area ③</td> </tr> <tr> <td>Distance = area under graph $= \frac{1}{2} \times 8 \times 6$ $= 24 \text{ m}$</td> <td>Distance = area under graph $= 8 \times 4$ $= 32 \text{ m}$</td> <td>Distance = area under graph $= 12 \times 10$ $= 120 \text{ m}$</td> </tr> </table> <p>Total Distance = $24\text{m} + 32\text{m} + 120\text{m} = 176\text{m}$</p>	Area ①	Area ②	Area ③	Distance = area under graph $= \frac{1}{2} \times 8 \times 6$ $= 24 \text{ m}$	Distance = area under graph $= 8 \times 4$ $= 32 \text{ m}$	Distance = area under graph $= 12 \times 10$ $= 120 \text{ m}$					
Area ①	Area ②	Area ③												
Distance = area under graph $= \frac{1}{2} \times 8 \times 6$ $= 24 \text{ m}$	Distance = area under graph $= 8 \times 4$ $= 32 \text{ m}$	Distance = area under graph $= 12 \times 10$ $= 120 \text{ m}$												
4	B	22	The rocket pushes down on the water and the water provides an equal but opposite reaction force due to Newton's 3 rd Law.											
5	B	32	<table border="1"> <tr> <td>Gravitational Potential Energy at 4.0 m $E_p = ?$ $m=0.25\text{kg}$ $g=9.8 \text{ N kg}^{-1}$ $h=6.0-4.0 = 2.0\text{m}$</td> <td>Kinetic Energy at 4.0 m $E_k = 4.9 \text{ J}$</td> </tr> </table> <p>$E_p = mgh$ $E_p = 0.25 \times 9.8 \times 2.0$ $E_p = 4.9 \text{ J}$</p> <p>Kinetic energy at 4.0m is gained from conversion of potential energy from 6.0m to 4.0m.</p>	Gravitational Potential Energy at 4.0 m $E_p = ?$ $m=0.25\text{kg}$ $g=9.8 \text{ N kg}^{-1}$ $h=6.0-4.0 = 2.0\text{m}$	Kinetic Energy at 4.0 m $E_k = 4.9 \text{ J}$									
Gravitational Potential Energy at 4.0 m $E_p = ?$ $m=0.25\text{kg}$ $g=9.8 \text{ N kg}^{-1}$ $h=6.0-4.0 = 2.0\text{m}$	Kinetic Energy at 4.0 m $E_k = 4.9 \text{ J}$													
6	B	19	<table border="1"> <tr> <td>Statement I - Incorrect There is gravity in space and it is dependent on the distance of the object from planet/moon</td> <td>Statement II - Correct Astronauts fall to earth at same acceleration as their spacecraft giving the feeling of weightlessness.</td> <td>Statement III - Incorrect Astronauts fall to earth at same acceleration as their spacecraft giving the feeling of weightlessness. Acceleration = unbalanced forces</td> </tr> </table>	Statement I - Incorrect There is gravity in space and it is dependent on the distance of the object from planet/moon	Statement II - Correct Astronauts fall to earth at same acceleration as their spacecraft giving the feeling of weightlessness.	Statement III - Incorrect Astronauts fall to earth at same acceleration as their spacecraft giving the feeling of weightlessness. Acceleration = unbalanced forces								
Statement I - Incorrect There is gravity in space and it is dependent on the distance of the object from planet/moon	Statement II - Correct Astronauts fall to earth at same acceleration as their spacecraft giving the feeling of weightlessness.	Statement III - Incorrect Astronauts fall to earth at same acceleration as their spacecraft giving the feeling of weightlessness. Acceleration = unbalanced forces												
7	C	66	Longest → Shortest diameter of galaxy > radius of orbit of Moon > radius of Earth											
8	A	82	<input checked="" type="checkbox"/> A Period of orbits for X, Y and Z increase in order. Z has a period of orbit of 24 hours <input checked="" type="checkbox"/> B if Z is geostationary then its period of orbit must be 24 hours. <input checked="" type="checkbox"/> C X and Y are closer to Earth than Z so must have period of orbits less than 24 hours <input checked="" type="checkbox"/> D X and Y are closer to Earth than Z so must have period of orbits less than 24 hours <input checked="" type="checkbox"/> E if Z is geostationary then its period of orbit must be 24 hours.											
9	A	83	<input checked="" type="checkbox"/> A R+S would slow spacecraft as force is in the opposite direction to direction of travel <input checked="" type="checkbox"/> B Q+S rockets would cancel each other out and would not change the speed <input checked="" type="checkbox"/> C P+Q would increase the speed of spacecraft in same direction of travel <input checked="" type="checkbox"/> D P+R rockets would cancel each other out and would not change the speed <input checked="" type="checkbox"/> E P+Q+R+S rockets would cancel each other out and would not change the speed											



10	D	81	Mass (kg)	Weight (N)	$g = \frac{W}{m}$	g	$W = m \times g$ $W = 6.0 \text{ kg} \times 8.8 \text{ N kg}^{-1}$ $W = 52.8 \text{ N}$	
			0.50	4.4	$g = \frac{W}{m} = \frac{4.4}{0.50} =$	8.8		
			2.5	22	$g = \frac{W}{m} = \frac{22}{2.5} =$	8.8		
			4.0	35	$g = \frac{W}{m} = \frac{3.5}{4.0} =$	8.75		
11	C	79	Q = ?		I = 2.0 A	$t = 5 \text{ minutes} = 5 \times 60 \text{ s}$		
					$Q = I t$			
					$Q = 2.0 \times 5 \times 60$			
					$Q = 600 \text{ C}$			
12	D	49	Statement I - Correct		Statement II - Incorrect		Statement III - Correct	
			The greater the gradient of a line on V-I graph the greater the resistance $\therefore P$ has higher resistance than R		The greater the gradient of a line on V-I graph the greater the resistance $\therefore R$ has <i>lower</i> resistance than Q		The gradient of line Q is decreasing as current increases \therefore The resistance of Q is decreasing as current increases	
13	E	39	<input checked="" type="checkbox"/> A Voltage is equal to the supply voltage in parallel circuit $\therefore 12V$ in each branch		<input checked="" type="checkbox"/> B Voltage is equal to the supply voltage in parallel circuit $\therefore 12V$ in each branch			
			<input checked="" type="checkbox"/> C Current splits in parallel branches current \therefore current at A ₁ is twice current at A ₂		<input checked="" type="checkbox"/> D Current splits in parallel branches current \therefore current at A ₁ is twice current at A ₂			
			<input checked="" type="checkbox"/> E Current at A ₁ is 0.6A, Current at A ₂ = 0.3A and Voltmeter voltage is 12V					
14	B	77	A 	B 	C 	D 	E 	
15	D	35	Statement I - Incorrect		Statement II - Correct		Statement III - Correct	
			The higher the specific heat capacity the more heat is needed to raise the temperature of the solid. This means Y has the higher specific heat capacity.		The horizontal portion of the graph represents the change of state from solid to liquid. Line X has a higher horizontal line indicating a higher melting point.		The latent heat of fusion for X is greater than Y as the horizontal line is longer for X than Y indicating more energy is needed to melt X than Y	
16	D	45	E = ?		$m = 1.6 \text{ kg}$		$l = 3.34 \times 10^5 \text{ J kg}^{-1}$	
					$E = m \times l$			
					$E = 1.6 \times 3.34 \times 10^5$			
17	E	48	W = ?		$m = 70.0 \text{ kg}$		$g = 9.8 \text{ N kg}^{-1}$	
					$W = m \times g$			
					$W = 70.0 \times 9.8$			
18	E	64	P = ?		$F = 686 \text{ N}$		$A = 8.0 \times 10^{-4} \text{ m}^2$	
					$P = \frac{F}{A} = \frac{686}{8.0 \times 10^{-4}} = 8.6 \times 10^5 \text{ Pa}$			
			$E_k = ?$		$k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$		$T = 100^\circ\text{C} = 373\text{K}$	
					$E_k = \frac{3}{2} k_B T$			
					$E_k = \frac{3}{2} \times 1.38 \times 10^{-23} \times 373$			
					$E_k = 7.72 \times 10^{-21} \text{ J}$			

19	A	81	<p><input checked="" type="checkbox"/> A sound waves are longitudinal waves with a speed of 340m s^{-1} in air</p> <p><input type="checkbox"/> B radio waves are transverse waves with a speed of $3 \times 10^8\text{m s}^{-1}$</p> <p><input type="checkbox"/> C ultraviolet waves are transverse waves with a speed of $3 \times 10^8\text{m s}^{-1}$</p> <p><input type="checkbox"/> D infrared waves are transverse waves with a speed of $3 \times 10^8\text{m s}^{-1}$</p> <p><input checked="" type="checkbox"/> E visible light are transverse waves with a speed of $3 \times 10^8\text{m s}^{-1}$</p>																																
20	D	39	<table border="1"> <tr> <td>Maximum wavelength</td> <td>Minimum Wavelength</td> </tr> <tr> <td> $v = 3 \times 10^8\text{m s}^{-1}$ $f = 3.0\text{MHz} = 3.0 \times 10^6\text{Hz}$ $\lambda = ?$ $\lambda = \frac{v}{f} = \frac{3.0 \times 10^8}{3.0 \times 10^6} = 100\text{m}$ </td> <td> $v = 3 \times 10^8\text{m s}^{-1}$ $f = 6.0\text{MHz} = 6.0 \times 10^6\text{Hz}$ $\lambda = ?$ $\lambda = \frac{v}{f} = \frac{3.0 \times 10^8}{6.0 \times 10^6} = 50\text{m}$ </td> </tr> </table>	Maximum wavelength	Minimum Wavelength	$v = 3 \times 10^8\text{m s}^{-1}$ $f = 3.0\text{MHz} = 3.0 \times 10^6\text{Hz}$ $\lambda = ?$ $\lambda = \frac{v}{f} = \frac{3.0 \times 10^8}{3.0 \times 10^6} = 100\text{m}$	$v = 3 \times 10^8\text{m s}^{-1}$ $f = 6.0\text{MHz} = 6.0 \times 10^6\text{Hz}$ $\lambda = ?$ $\lambda = \frac{v}{f} = \frac{3.0 \times 10^8}{6.0 \times 10^6} = 50\text{m}$																												
Maximum wavelength	Minimum Wavelength																																		
$v = 3 \times 10^8\text{m s}^{-1}$ $f = 3.0\text{MHz} = 3.0 \times 10^6\text{Hz}$ $\lambda = ?$ $\lambda = \frac{v}{f} = \frac{3.0 \times 10^8}{3.0 \times 10^6} = 100\text{m}$	$v = 3 \times 10^8\text{m s}^{-1}$ $f = 6.0\text{MHz} = 6.0 \times 10^6\text{Hz}$ $\lambda = ?$ $\lambda = \frac{v}{f} = \frac{3.0 \times 10^8}{6.0 \times 10^6} = 50\text{m}$																																		
21	C	83	<p>Infrared and ultraviolet should be the opposite sides of the visible light band</p> <table border="1"> <tr> <td>EM Type</td> <td>Gamma</td> <td>X-Ray</td> <td>Ultra-violet</td> <td>Visible</td> <td>Infra-Red</td> <td>Microwave</td> <td>Radio & TV</td> </tr> <tr> <td>Energy</td> <td>High</td> <td colspan="5"></td> <td>Low</td> </tr> <tr> <td>Frequency</td> <td>High</td> <td colspan="5"></td> <td>Low</td> </tr> <tr> <td>Wavelength</td> <td>Low</td> <td colspan="5"></td> <td>High</td> </tr> </table>	EM Type	Gamma	X-Ray	Ultra-violet	Visible	Infra-Red	Microwave	Radio & TV	Energy	High						Low	Frequency	High						Low	Wavelength	Low						High
EM Type	Gamma	X-Ray	Ultra-violet	Visible	Infra-Red	Microwave	Radio & TV																												
Energy	High						Low																												
Frequency	High						Low																												
Wavelength	Low						High																												
22	E	58	10mm of aluminium will stop beta particles. There will be no beta particles at P or Q Alpha particles are stopped by 100mm aluminium in addition to a piece of paper. Only gamma is penetrating enough to pass through 10mm of aluminium.																																
23	A	78	$A = \frac{N}{t} = \frac{3000}{2 \times 60} = 25 \text{ Bq}$																																
24	D	48	<p><input type="checkbox"/> A beta radiation would not be able to leave the body to get to the detector</p> <p><input type="checkbox"/> B beta radiation would not be able to leave the body to get to the detector</p> <p><input checked="" type="checkbox"/> C The half-life is too short and much of the substance will have decayed.</p> <p><input checked="" type="checkbox"/> D Gamma is emitted and half-life is short so not much remains in the body for long</p> <p><input type="checkbox"/> E The half-life is too long and the substance will remain in the body for many years.</p>																																
25	C	64	$\text{Number of lives} = \frac{\text{time elapsed}}{\text{half-life}} = \frac{120\text{s}}{30\text{s}} = 4$ <p>$3200 \text{ Bq} \rightarrow 1600 \text{ Bq} \rightarrow 800 \text{ Bq} \rightarrow 400 \text{ Bq} \rightarrow 200 \text{ Bq}$</p>																																

Question	Answer	Physics Covered						
1a(i)	190 km	$x = \sqrt{(130)^2 + (140)^2}$ $x = \sqrt{16900 + 19600}$ $x = \sqrt{36500}$ $x = 190 \text{ km}$						
1a(ii)	223	$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{130}{140} = 0.929 \quad \therefore \theta = 43^\circ$ $\text{Bearing} = 180^\circ + 43^\circ = 223$						
1b(i)	110 m s ⁻¹	$d = 190 \text{ km} = 190000 \text{ m}$ $d = \bar{v} t$ $190000 = \bar{v} \times 0.5 \times 60 \times 60$ $\bar{v} = 110 \text{ m s}^{-1}$						
1b(ii)	110 m s ⁻¹ at bearing 043	$\text{Velocity} = 110 \text{ m s}^{-1}$ $\text{Bearing from Glasgow to Aberdeen} = 220 - 180 = 043$						
2a(i)	Graph showing:	<table border="1"> <tr> <td>1 mark</td> <td>1 mark</td> <td>1 mark</td> </tr> <tr> <td>suitable scales, labels and units</td> <td>all points plotted accurately to \pm half a division</td> <td>best fit straight line</td> </tr> </table>	1 mark	1 mark	1 mark	suitable scales, labels and units	all points plotted accurately to \pm half a division	best fit straight line
1 mark	1 mark	1 mark						
suitable scales, labels and units	all points plotted accurately to \pm half a division	best fit straight line						
2a(ii)	0.57m							
2a(iii)	One answer from:	<table border="1"> <tr> <td>Place carbon paper under landing site</td> <td>Place sand tray under landing site</td> <td>Use video analysis</td> </tr> </table>	Place carbon paper under landing site	Place sand tray under landing site	Use video analysis			
Place carbon paper under landing site	Place sand tray under landing site	Use video analysis						
2b(i)	Any suitable variable							
2b(ii)	Answer to include:	<table border="1"> <tr> <td>1 mark</td> <td>Description of how independent variable will be changed.</td> </tr> <tr> <td>1 mark</td> <td>Indication of how a fair test is achieved.</td> </tr> </table>	1 mark	Description of how independent variable will be changed.	1 mark	Indication of how a fair test is achieved.		
1 mark	Description of how independent variable will be changed.							
1 mark	Indication of how a fair test is achieved.							
3a(i)	4.8x10 ⁶ N	$W = ? \quad m = 1.3 \times 10^6 \text{ kg} \quad g = 3.7 \text{ N kg}^{-1}$ $W = m \times g \quad (1 \text{ mark})$ $W = 1.3 \times 10^6 \times 3.7 \quad (1 \text{ mark})$ $W = 4.8 \times 10^6 \text{ N} \quad (1 \text{ mark})$						
3a(ii)	Two answers from:	<p><u>Direction Up</u> \uparrow One from:</p> <ul style="list-style-type: none"> thrust rocket thrust engine thrust <p><u>Direction Up</u> \downarrow One from:</p> <ul style="list-style-type: none"> weight pull of gravity gravitational pull force due to gravity' force from exhaust gases on rocket 						
3a(iii)	5.5 m s ⁻²	$F_{\text{un}} = \text{engine thrust} - \text{weight}$ $F_{\text{un}} = 1.2 \times 10^7 - 4.8 \times 10^6$ $F_{\text{un}} = 7.2 \times 10^6 \text{ N} \quad (1 \text{ mark})$ $F = m \times a \quad (1 \text{ mark})$ $7.2 \times 10^6 = 1.3 \times 10^6 \times a \quad (1 \text{ mark})$ $a = 5.5 \text{ m s}^{-2} \quad (1 \text{ mark})$						

3b	Answer to include:	1 mark Acceleration increases 1 mark Weight/mass decreases (as fuel is used) or Gravitational field strength decreases												
4	Open ended question:	<table border="1"> <tr> <td>1 mark</td> <td>2 marks</td> <td>3 marks</td> </tr> <tr> <td>Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.</td> <td>Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.</td> <td>Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.</td> </tr> </table>	1 mark	2 marks	3 marks	Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.	Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.	Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.						
1 mark	2 marks	3 marks												
Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.	Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.	Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.												
5a(i)	$8.1 \times 10^{18} \text{ m}$	$d = v \times t$ $d = 3.0 \times 10^8 \times 860 \times 365.25 \times 24 \times 60 \times 60$ $d = 8.1 \times 10^{18} \text{ m}$												
5a(ii)	$1.5 \times 10^8 \text{ m s}^{-1}$	$5\% \text{ of } 3.0 \times 10^8 \text{ m s}^{-1} = \frac{5}{100} \times 3.0 \times 10^8 \text{ m s}^{-1} = 1.5 \times 10^7 \text{ m s}^{-1}$												
5a(iii)	$5.4 \times 10^{11} \text{ s}$	$d = v \times t$ $8.1 \times 10^{18} = 1.5 \times 10^7 \times t$ $t = 5.4 \times 10^{11} \text{ s}$												
5b	One answer from:	The light/EM radiation from the supernova has or The light EM radiation takes 860 years to reach Earth not reached the Earth yet												
5c(i)	Line spectrum Or Adorption	<table border="1"> <thead> <tr> <th>Type of Spectra</th> <th>Diagram</th> <th>Description</th> </tr> </thead> <tbody> <tr> <td>Continuous Spectrum</td> <td></td> <td>Colour spectrum with no lines</td> </tr> <tr> <td>Adsorption Line Spectrum</td> <td></td> <td>Colour Spectrum with black lines. At various points.</td> </tr> <tr> <td>Emission Line Spectrum</td> <td></td> <td>Black background with coloured lines</td> </tr> </tbody> </table>	Type of Spectra	Diagram	Description	Continuous Spectrum		Colour spectrum with no lines	Adsorption Line Spectrum		Colour Spectrum with black lines. At various points.	Emission Line Spectrum		Black background with coloured lines
Type of Spectra	Diagram	Description												
Continuous Spectrum		Colour spectrum with no lines												
Adsorption Line Spectrum		Colour Spectrum with black lines. At various points.												
Emission Line Spectrum		Black background with coloured lines												
5c(ii)	Answer to include:	Lines in this spectrum can be matched compared with lines in the spectrum from the element.												
6a	Answer to include:	<table border="1"> <tr> <td>1 mark</td> <td>Resistor 1</td> </tr> <tr> <td>1 mark</td> <td>Lower resistance (produces a larger current)</td> </tr> </table>	1 mark	Resistor 1	1 mark	Lower resistance (produces a larger current)								
1 mark	Resistor 1													
1 mark	Lower resistance (produces a larger current)													
6b	1.2 V	$V_s = 6.0 \text{ V}$ $V_2 = ?$ $R_1 = 16.0 \Omega$ $R_2 = 4.0 \Omega$ $V_2 = \frac{R_2}{R_1 + R_2} \times V_s \quad (1 \text{ mark})$ $V_2 = \frac{4.0}{16.0 + 4.0} \times 6.0 \quad (1 \text{ mark})$ $V_2 = 1.2 \text{ V} \quad (1 \text{ mark})$												
6c(i)	3.2 Ω	$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} \quad (1 \text{ mark})$ $\frac{1}{R_T} = \frac{1}{4.0} + \frac{1}{16.0} \quad (1 \text{ mark})$ $\frac{1}{R_T} = \frac{5}{16}$ $R_T = 3.2 \Omega \quad (1 \text{ mark})$												
6c(ii)	Answer to include:	<table border="1"> <tr> <td>1 mark</td> <td>(Reading on ammeter) increases</td> </tr> <tr> <td>1 mark</td> <td>Total resistance decreases</td> </tr> </table>	1 mark	(Reading on ammeter) increases	1 mark	Total resistance decreases								
1 mark	(Reading on ammeter) increases													
1 mark	Total resistance decreases													
7a	3 A	$\text{Power Rating} = 0.35 \text{ kW} = 350 \text{ W}$ <ul style="list-style-type: none"> Devices with a Power Rating of 720 W or below have a 3A fuse fitted Devices with a Power Rating above 720 W have a 13A fuse fitted. 												
7b	150 Ω	$P = 0.35 \text{ kW} = 350 \text{ W}$ $P = \frac{V^2}{R} \quad \therefore 350 = \frac{(230)^2}{R} \quad \therefore R = \frac{52900}{350} = 150 \Omega$												

7c(i)	or	Diodes and LEDs must have the correct orientation if they are to work in a Circuit. The triangular shape points to the negative end of the power supply.																																				
7c(ii)	Answer to include:	<table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>1 mark</td><td>Voltage across variable resistor increases</td></tr> <tr><td>1 mark</td><td>Transistor switches on</td></tr> </table>	1 mark	Voltage across variable resistor increases	1 mark	Transistor switches on																																
1 mark	Voltage across variable resistor increases																																					
1 mark	Transistor switches on																																					
7c(iii)	One answer from:	To $\begin{bmatrix} \text{adjust} \\ \text{control} \end{bmatrix}$ the moisture level at which the $\begin{bmatrix} \text{dehumidifier} \\ \text{transistor} \\ \text{LED} \\ \text{fan} \end{bmatrix}$ switches on																																				
8a	7.6 A	$P = 1750 \text{ W}$ $I = ?$ $V = 230 \text{ V}$ $P = I V$ (1 mark) $1750 = I \times 230$ (1 mark) $I = 7.6 \text{ A}$ (1 mark)																																				
8b(i)	237°C	$E_h = 126000 \text{ J}$ $c = 902 \text{ J kg}^{-1} \text{ }^\circ\text{C}^{-1}$ $m = 0.650 \text{ kg}$ $\Delta T = ?$ $E = c \times m \times \Delta T$ (1 mark) $126000 = 902 \times 0.650 \times \Delta T$ (1 mark) $\Delta T = 215^\circ\text{C}$ (1 mark) Final Temperature = Initial Temperature + $\Delta T = 22^\circ\text{C} + 215^\circ\text{C} = 237^\circ\text{C}$																																				
8b(ii)	One answer from:	<u>Heat (energy)</u> is lost to the $\begin{bmatrix} \text{surroundings} \\ \text{rest of iron} \\ \text{clothes} \end{bmatrix}$																																				
9a	One of the 3 methods shown:	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td colspan="4" style="text-align: left; padding-bottom: 5px;">2 marks for using 2 or more sets of data to work out $\frac{p}{T}$ values. ($\frac{T}{p}$ also acceptable)</td> </tr> <tr> <td style="text-align: center; padding: 5px;">$\frac{p}{T} = \frac{121 \times 10^3}{323} = 375$</td> <td style="text-align: center; padding: 5px;">$\frac{p}{T} = \frac{124 \times 10^3}{333} = 372$</td> <td style="text-align: center; padding: 5px;">$\frac{p}{T} = \frac{128 \times 10^3}{343} = 373$</td> <td style="text-align: center; padding: 5px;">$\frac{p}{T} = \frac{132 \times 10^3}{353} = 374$</td> </tr> <tr> <td colspan="4" style="text-align: center; padding-top: 10px;">1 mark for a statement of relationship: $\frac{p}{T} = \text{constant}$</td> </tr> <tr> <td colspan="2" style="text-align: center; padding-top: 5px;">or</td> <td colspan="2"></td> </tr> <tr> <td colspan="2" style="text-align: center; padding-top: 5px;">Alternative Method 1:</td> <td colspan="2" style="text-align: center; padding-top: 5px;">Alternative Method 2: Graphical Method</td> </tr> <tr> <td colspan="2" style="text-align: center; padding-top: 5px;">Use of $\frac{p_1}{T_1} = \frac{p_2}{T_2}$ to verify relationship</td> <td colspan="2" style="text-align: center; padding-top: 5px;">Graph drawn on graph paper with</td> </tr> <tr> <td colspan="2" style="text-align: center; padding-top: 5px;">1 mark: all four sets of data (min 3 calculations)</td> <td colspan="2" style="text-align: center; padding-top: 5px;">1 mark: Suitable scales, labels and units</td> </tr> <tr> <td colspan="2" style="text-align: center; padding-top: 5px;">1 mark: all calculations correct</td> <td colspan="2" style="text-align: center; padding-top: 5px;">1 mark: All points plotted accurately</td> </tr> <tr> <td colspan="2" style="text-align: center; padding-top: 5px;">1 mark: Relationship stated and supported</td> <td colspan="2" style="text-align: center; padding-top: 5px;">1 mark: relationship stated</td> </tr> </table>	2 marks for using 2 or more sets of data to work out $\frac{p}{T}$ values. ($\frac{T}{p}$ also acceptable)				$\frac{p}{T} = \frac{121 \times 10^3}{323} = 375$	$\frac{p}{T} = \frac{124 \times 10^3}{333} = 372$	$\frac{p}{T} = \frac{128 \times 10^3}{343} = 373$	$\frac{p}{T} = \frac{132 \times 10^3}{353} = 374$	1 mark for a statement of relationship: $\frac{p}{T} = \text{constant}$				or				Alternative Method 1:		Alternative Method 2: Graphical Method		Use of $\frac{p_1}{T_1} = \frac{p_2}{T_2}$ to verify relationship		Graph drawn on graph paper with		1 mark: all four sets of data (min 3 calculations)		1 mark: Suitable scales, labels and units		1 mark: all calculations correct		1 mark: All points plotted accurately		1 mark: Relationship stated and supported		1 mark: relationship stated	
2 marks for using 2 or more sets of data to work out $\frac{p}{T}$ values. ($\frac{T}{p}$ also acceptable)																																						
$\frac{p}{T} = \frac{121 \times 10^3}{323} = 375$	$\frac{p}{T} = \frac{124 \times 10^3}{333} = 372$	$\frac{p}{T} = \frac{128 \times 10^3}{343} = 373$	$\frac{p}{T} = \frac{132 \times 10^3}{353} = 374$																																			
1 mark for a statement of relationship: $\frac{p}{T} = \text{constant}$																																						
or																																						
Alternative Method 1:		Alternative Method 2: Graphical Method																																				
Use of $\frac{p_1}{T_1} = \frac{p_2}{T_2}$ to verify relationship		Graph drawn on graph paper with																																				
1 mark: all four sets of data (min 3 calculations)		1 mark: Suitable scales, labels and units																																				
1 mark: all calculations correct		1 mark: All points plotted accurately																																				
1 mark: Relationship stated and supported		1 mark: relationship stated																																				
9b	138kPa – 142kPa	<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th>Temperature (°C)</th> <th>Temperature (K)</th> <th>Pressure (kPa)</th> <th>Difference</th> <th>Estimate (kPa)</th> </tr> </thead> <tbody> <tr> <td>50</td> <td>323</td> <td>121</td> <td></td> <td>-</td> </tr> <tr> <td>60</td> <td>333</td> <td>124</td> <td>3</td> <td>-</td> </tr> <tr> <td>70</td> <td>343</td> <td>128</td> <td>4</td> <td>-</td> </tr> <tr> <td>80</td> <td>353</td> <td>132</td> <td>4</td> <td>-</td> </tr> <tr> <td>90</td> <td>363</td> <td>-</td> <td>(4)</td> <td>136</td> </tr> <tr> <td>100</td> <td>373</td> <td>-</td> <td>(4)</td> <td>140</td> </tr> </tbody> </table>	Temperature (°C)	Temperature (K)	Pressure (kPa)	Difference	Estimate (kPa)	50	323	121		-	60	333	124	3	-	70	343	128	4	-	80	353	132	4	-	90	363	-	(4)	136	100	373	-	(4)	140	
Temperature (°C)	Temperature (K)	Pressure (kPa)	Difference	Estimate (kPa)																																		
50	323	121		-																																		
60	333	124	3	-																																		
70	343	128	4	-																																		
80	353	132	4	-																																		
90	363	-	(4)	136																																		
100	373	-	(4)	140																																		
9c	One answer from:	<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td>Repeat the experiment</td> <td>Add more water (in the beaker)</td> <td>Have more of the flask in the water</td> <td>Increase the range (of temperatures)</td> </tr> <tr> <td>Stir the water</td> <td colspan="2">Reduce the length/diameter of the connecting tube</td> <td>Take readings at more (different) temperatures within the range</td> </tr> </table>	Repeat the experiment	Add more water (in the beaker)	Have more of the flask in the water	Increase the range (of temperatures)	Stir the water	Reduce the length/diameter of the connecting tube		Take readings at more (different) temperatures within the range																												
Repeat the experiment	Add more water (in the beaker)	Have more of the flask in the water	Increase the range (of temperatures)																																			
Stir the water	Reduce the length/diameter of the connecting tube		Take readings at more (different) temperatures within the range																																			

9d	Answer to include:	1 mark	(The increase in temperature) increases the kinetic energy of the gas particles/the particles move faster.						
		1 mark	The particles hit the tyre walls more frequently		The particles hit the tyre walls with greater force.				
		1 mark	Pressure (in the tyre) increases						
10a(i)	0.020m	$\lambda = \frac{\text{Distance of waves}}{\text{Number of waves}} = \frac{0.12\text{m}}{6} = 0.020\text{m}$							
10a(ii)	15Hz	Number of waves $N = 6$ $t = 0.40\text{s}$ $f = ?$ $f = \frac{N}{t} = \frac{6}{0.4} = 15\text{Hz}$ (1 mark) (1 mark)							
10a(iii)	0.3m s ⁻¹	$v = ?$ $f = 15\text{Hz}$ $\lambda = 0.20\text{m}$ $v = f \times \lambda$ (1 mark) $v = 15 \times 0.20$ (1 mark) $v = 0.3 \text{ m s}^{-1}$ (1 mark)							
10b	Diagram showing	<u>1 mark</u> diffraction of waves into 'right' shadow' region of the plastic block <u>1 mark</u> consistent wavelengths before and after plastic block							
11a(i)	refraction	Refraction occurs when waves pass from one medium to another							
11a(ii)	Diagram showing:								
11a(iii)	less	Change of properties	Change of Medium Less dense to more dense e.g. air to glass	Change of Medium More dense to less dense e.g. glass to air					
		Speed of waves	Speed decreases	Speed increases					
		Wavelength of wave	Wavelength decreases	Wavelength increases					
		Direction of wave	Bends towards normal	Bends away from normal					
11b	1.7x10 ⁻³ s	$P = 25 \text{ W}$ $E = 42.5 \times 10^{-3} \text{ J}$ $t = ?$ $P = \frac{E}{t} \therefore 25 = \frac{42.5 \times 10^{-3}}{t} \therefore t = 25 \times 42.5 \times 10^{-3} = 1.7 \times 10^{-3} \text{ s}$ (1 mark) (1 mark) (1 mark)							
12a(i)	Answer to include:	As the distance increases the infrared radiation detected decreases							
12a(ii)	Answer to include:	<table border="1"> <tr> <td>1 mark</td> <td>Similar shape to original curve</td> </tr> <tr> <td>1 mark</td> <td>Line always below original curve</td> </tr> </table>				1 mark	Similar shape to original curve	1 mark	Line always below original curve
1 mark	Similar shape to original curve								
1 mark	Line always below original curve								
12b	Open ended question:	1 mark	2 marks	3 marks					
		Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.	Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.	Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.					
13a	Answer to include:	1 mark	Alpha is (more easily) absorbed by air/smoke/detector or Alpha has a short(er) range in air						
		1 mark	Alpha is the most ionising						

13b(i)	Z	Source	X	Y	Z
		Estimate of half-life (time taken for 100kBq to 50kBq)	80 days	20 days	250 days
13b(ii)	Answer to include:		1 mark The half-life of the sources are too short	1 mark The smoke detectors would only work for a short time need to be replaced frequently not last 10 years	
13c	7.2×10^{-4} Sv	$H = ?$ <u>For 1 hour:</u> $H = D \times W_r$ $H = 4.5 \times 10^{-6} \text{ Gy} \times 20 \text{ hours}$ $H = 9.0 \times 10^{-5} \text{ Sv}$ <u>For 8 hours:</u> $H = 9.0 \times 10^{-5} \text{ Sv} \times 8$ $H = 7.2 \times 10^{-4} \text{ Sv}$	$D = 4.5 \mu\text{Gy} = 4.5 \times 10^{-6} \text{ Gy}$	$W_r = 20$	
14a	nucleus splits into two or more smaller nuclei	Nuclear fission is when a large nucleus of an atom splits into two or more smaller nuclei. Energy can be released from a fission reaction if the original nucleus is large enough,			
14b(i)	1.9×10^{22} fissions	$P = 150 \text{ MW} = 250 \times 10^6 \text{ W}$ $E = ?$ $t = 1 \text{ hour} = 60 \times 60 \text{ s}$ $P = \frac{E}{t}$ $150 \times 10^6 \text{ W} = \frac{E}{60 \times 60 \text{ s}}$ $E = 5.4 \times 10^{11} \text{ J}$ $\text{Number of fissions} = \frac{5.4 \times 10^{11} \text{ J}}{2.9 \times 10^{-11} \text{ J}}$ $\text{Number of fissions} = 1.9 \times 10^{22}$			
14b(ii)	One answer from:	Requires high temperatures	Difficult to control/contain plasma	Requires strong magnetic fields	

/