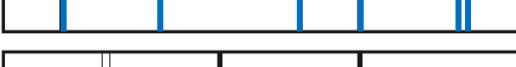
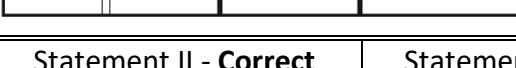


JABstem

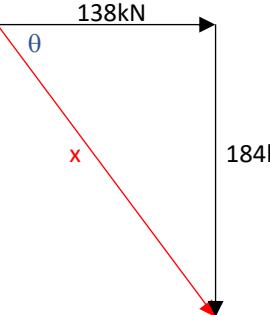
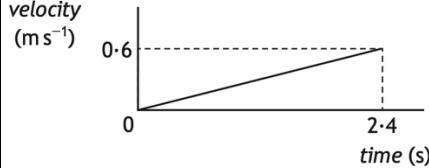
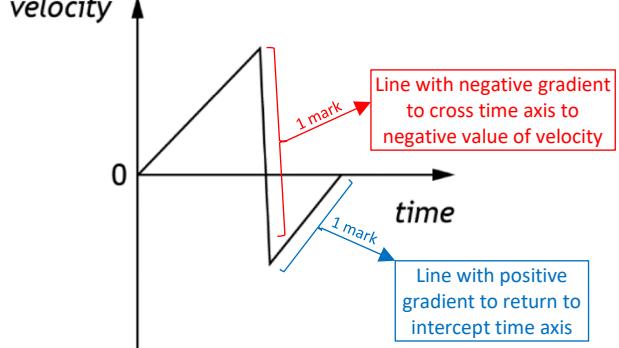
Not to be shared without copyright holder's permission

Past Papers



Nat 5 **Physics**

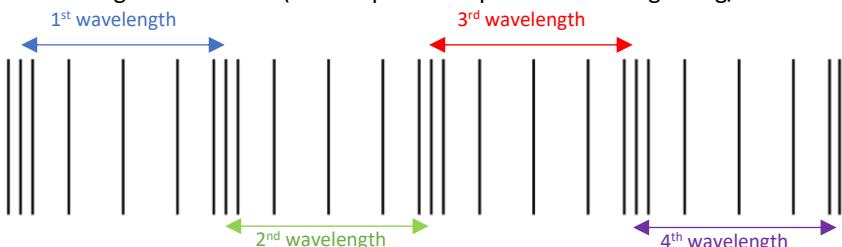
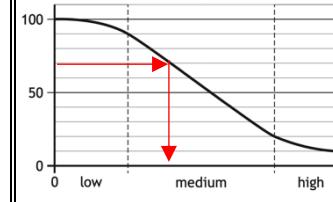
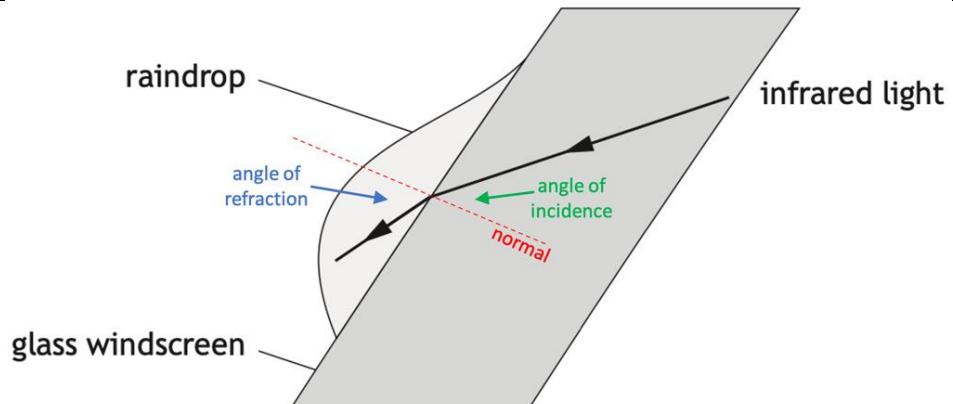
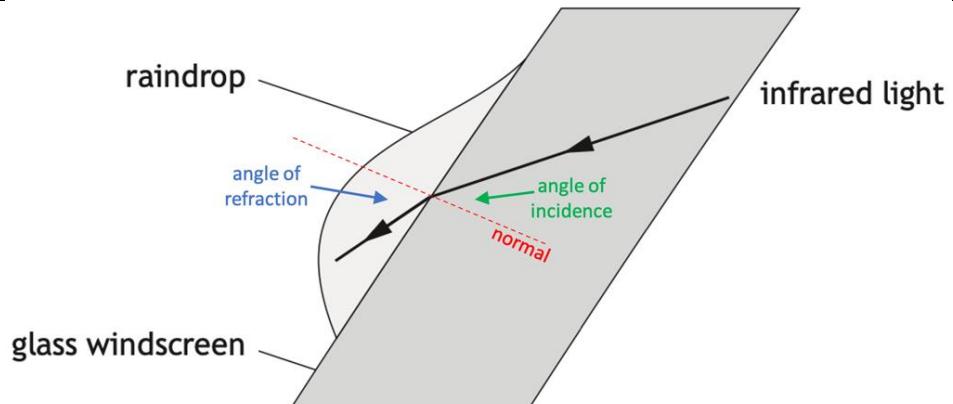
2018 **Marking Scheme**

Grade Awarded	Mark Required		% candidates achieving grade
	/125	%	
A	86+	68.8%	31.2%
B	72+	57.6%	23.3%
C	58+	46.4%	20.5%
D	44+	35.2%	14.6%
No award	<44	<35.2	10.4%




Section:	Multiple Choice	Extended Answer	Assignment
Average Mark:	16.4 /25	39.4 /75	17.2 /25

2018 Nat5 Physics Marking Scheme

Question	Answer	% Correct	Physics Covered																	
1	E	85	Vector Quantity	force	velocity	displacement	acceleration	weight												
			Scalar Quantity	mass	speed	distance	time	energy												
2	D	94	Total distance = 50m + 120m + 50m + 120m = 340m Displacement = 0m as start and end positions are the same.																	
3	E	13	<input checked="" type="checkbox"/> A there is the force of gravity acting on the ball in the vertical direction <input checked="" type="checkbox"/> B there is no horizontal force acting on a ball thrown vertically <input checked="" type="checkbox"/> C once the ball stops moving upwards there is no upwards force acting on the ball <input checked="" type="checkbox"/> D there is no upwards force to balance the force of gravity pulling on the ball <input checked="" type="checkbox"/> E Only force of gravity is acting on the ball in the downwards direction once it stops moving up																	
4	C	81	$E_w = ?$ $F = 120 \text{ N}$ $E_w = F \times d$ $E_w = 120 \times 25$ $E_w = 3000 \text{ J}$ $P = ?$ $E = 3000 \text{ J}$ $P = \frac{E}{t} = \frac{3000}{5.0} = 600 \text{ W}$				$d = 25 \text{ m}$	$t = 5.0 \text{ s}$												
5	A	78	A galaxy is a collection of stars. Each star may have a solar system where a collection of planets orbiting around a star. Each planet many have natural moons orbiting those planets or artificial satellites in orbit.																	
6	C	88	<table border="1"> <tr> <td>Satellite</td> <td>Iridium-124</td> <td>Satellite</td> <td>Astra-5B</td> </tr> <tr> <td>Orbital Height</td> <td>630 km</td> <td>23000 km</td> <td>36000 km</td> </tr> <tr> <td>Period</td> <td>97 minutes</td> <td>(835 minutes)</td> <td>1440 minutes</td> </tr> </table> <p>Satellite has orbital height between Iridium-124 & Astra-5B \therefore satellite has period between Iridium-124 & Astra-5B</p>	Satellite	Iridium-124	Satellite	Astra-5B	Orbital Height	630 km	23000 km	36000 km	Period	97 minutes	(835 minutes)	1440 minutes					
Satellite	Iridium-124	Satellite	Astra-5B																	
Orbital Height	630 km	23000 km	36000 km																	
Period	97 minutes	(835 minutes)	1440 minutes																	
7	D	78	Rocket travels at constant speed. There is no air resistance to slow the rocket down. so when the engines are turned off forces are balanced and the spacecraft travels an constant speed in a straight line.																	
8	A	77	<input checked="" type="checkbox"/> A Mass is the same, weight is greater as gravitational field strength is greater. <input checked="" type="checkbox"/> B Mass does not change regardless of the planet's gravitational field strength <input checked="" type="checkbox"/> C For weight to be same, the gravitational field strength would need to be the same <input checked="" type="checkbox"/> D Mass does not change regardless of the planet's gravitational field strength <input checked="" type="checkbox"/> E For weight to be less, the gravitational field strength would need to be less																	
9	D	62	$d = v \times t$ $d = 3 \times 10^8 \times 8.6 \times 365.25 \times 24 \times 60 \times 60$ $d = 8.1 \times 10^{16} \text{ m}$																	
10	C	89	line spectrum from star Element X Element Y Element Z 																	
11	E	19	<table border="1"> <tr> <td>Statement I - Correct</td> <td>Statement II - Correct</td> <td>Statement III - Correct</td> </tr> <tr> <td>In an a.c. circuit the direction of the current <i>does</i> change regularly</td> <td>In a d.c. circuit negative charges <i>do</i> flow in one direction only.</td> <td>In an a.c. circuit the size of the current <i>does</i> varies with time.</td> </tr> </table>	Statement I - Correct	Statement II - Correct	Statement III - Correct	In an a.c. circuit the direction of the current <i>does</i> change regularly	In a d.c. circuit negative charges <i>do</i> flow in one direction only.	In an a.c. circuit the size of the current <i>does</i> varies with time.											
Statement I - Correct	Statement II - Correct	Statement III - Correct																		
In an a.c. circuit the direction of the current <i>does</i> change regularly	In a d.c. circuit negative charges <i>do</i> flow in one direction only.	In an a.c. circuit the size of the current <i>does</i> varies with time.																		





12	D	43	Observation	Conclusion	Answers Ruled Out
			Particles Bends towards Q	Particle and Q cannot have same charge	<input checked="" type="checkbox"/> B <input checked="" type="checkbox"/> E
13	A	45	Voltage Across In Thermistor	Voltage Across Variable Resistor	LED
			Decreases	Increases	Switches On
Increasing the temperature of a thermistor decreases the resistance of the thermistor. Decreasing the resistance of the thermistor will decrease the voltage over the thermistor		If the voltage over the thermistor decreases the voltage over the variable resistor will increase at same time.		The decrease in voltage over the thermistor and increase in voltage over the variable resistor leads to the transistor switching on	
14	C	74	Combining Parallel Resistors:		Combining Series Resistors:
			$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$ $\frac{1}{R_T} = \frac{1}{12} + \frac{1}{12}$ $\frac{1}{R_T} = \frac{2}{12}$ $R_T = 6\Omega$		$R_T = 12 + 6 = 18\Omega$
15	B	83	$P = ?$	$V = 12V$ $P = \frac{V^2}{R} = \frac{(12)^2}{4.0} = \frac{144}{4.0} = 36W$	$R = 4.0\Omega$
16	C	55			
17	C	47	$P = 1.0 \times 10^5 \text{ Pa} - 0.40 \times 10^5 \text{ Pa} = 0.6 \times 10^5 \text{ Pa}$	$F = ?$ $P = \frac{F}{A}$ $0.6 \times 10^5 = \frac{F}{2.0}$ $F = 1.2 \times 10^5 \text{ N}$	$A = 2.0 \text{ m}^2$
18	B	70	$\text{Temperature Change in degrees Celsius} = 70^\circ\text{C} - (-20^\circ\text{C}) = 90^\circ\text{C}$ $\therefore \text{Temperature Change in Kelvin} = 90\text{K}$		

			Temperature: Constant	$p_1 = 1.2 \times 10^5 \text{ Pa}$	$V_1 = 4.0 \times 10^{-5} \text{ m}^3$
				$p_2 = ?$	$V_2 = 0.80 \times 10^{-5} \text{ m}^3$
				$p_1 V_1 = p_2 V_2$	
19	E	73		$1.2 \times 10^5 \times 4.0 \times 10^{-5} = p_2 \times 0.80 \times 10^{-5}$	
				$1.2 \times 10^5 \times 4.0 \times 10^{-5} = p_2 \times 0.80 \times 10^{-5}$	
				$0.80 \times 10^{-5} = p_2$	
				$6.0 \times 10^5 \text{ Pa} = p_2$	
20	B	48	Statement I - Incorrect	Statement II - Correct	Statement III - Incorrect
			Refraction occurs when waves pass from one medium to another	Diffraction is greater in waves with a longer wavelength	Microwaves have a shorter wavelength than radio waves so microwaves diffract less than radio waves
21	A	78	<input checked="" type="checkbox"/> A Radiation R is X-rays and have a higher frequency than visible light <input checked="" type="checkbox"/> B Radiation R is X-rays as this radiation is between gamma and ultraviolet <input checked="" type="checkbox"/> C X-rays have a higher frequency than visible light <input checked="" type="checkbox"/> D Radiation R is X-rays as this radiation is between gamma and ultraviolet <input checked="" type="checkbox"/> E Radiation R is X-rays as this radiation is between gamma and ultraviolet		
22	C	73	$E = ?$	$\rho = 1.02 \times 10^3 \text{ kg m}^{-3}$	$g = 9.8 \text{ N kg}^{-1}$
			$E = \frac{\rho g A^2}{2} = \frac{1.02 \times 10^3 \times 9.8 \times (3.5)^2}{2} = \frac{122451}{2} = 61226 \text{ J} = 6.1 \times 10^4 \text{ J}$		$A = 3.5 \text{ m}$
23	A	42	$\dot{H} = 0.40 \text{ mSv h}^{-1}$	$H = ?$	$t = 30 \text{ minutes} = 0.5 \text{ h}$
			$\dot{H} = \frac{H}{T}$	$0.40 = \frac{H}{0.5}$	$H = 0.40 \times 0.5 = 0.20 \text{ mSv}$
24	B	61	$200 \text{ kBq} \rightarrow 100 \text{ kBq} \rightarrow 50 \text{ kBq} \rightarrow 25 \text{ kBq}$		
				$3 \text{ half-lives in 12 days}$	
				$\therefore 1 \text{ half-life} = 4 \text{ days}$	
25	B	75	X	Y	Z
			Fusion	High	Energy
			Nuclear fusion reactions involve 2 smaller nuclei joining together to make a larger nucleus	Fusion reactions only take place at very high temperatures	Energy can be released when small nuclei join together in a fusion reaction

Question	Answer	Physics Covered						
1a(i)A	230 kN		$x = \sqrt{(138)^2 + (184)^2}$ $x = \sqrt{19044 + 33856}$ $x = \sqrt{52900}$ $x = 230 \text{ kN}$					
1a(i)B	143	$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{184}{138} = 1.333 \therefore \theta = 53^\circ$ Bearing = $90^\circ + 53^\circ = 143$						
1a(ii)	3.4 m s^{-2}	$F = 230000 \text{ N}$ $m = 6.8 \times 10^4 \text{ kg}$ $F = m a$ $230000 = 6.8 \times 10^4 \times a$ $a = 3.4 \text{ m s}^{-2}$	$a = ?$ (1 mark) (1 mark) (1 mark)					
1b	Answer to include:	<table border="1"> <tr> <td>1 mark</td> <td>$\frac{\text{mass}}{\text{weight}}$ is less (downward) force</td> </tr> <tr> <td>1 mark</td> <td>pressure is force per unit area or pressure is weight per unit area</td> </tr> </table>	1 mark	$\frac{\text{mass}}{\text{weight}}$ is less (downward) force	1 mark	pressure is force per unit area or pressure is weight per unit area		
1 mark	$\frac{\text{mass}}{\text{weight}}$ is less (downward) force							
1 mark	pressure is force per unit area or pressure is weight per unit area							
2a(i)	One answer from:	Time for card to pass through light gate X						
2a(ii)	0.46 m s^{-1}	$v = \frac{\text{length of card}}{\text{time for card to cut beam}} = \frac{0.045}{0.098} = 0.46 \text{ m s}^{-1}$	(1 mark)					
2a(iii)	0.25 m s^{-2}	$a = ?$ $v = 0.46 \text{ m s}^{-1}$ $u = 0.32 \text{ m s}^{-1}$ $a = \frac{v - u}{t} = \frac{0.46 - 0.32}{0.56} = 0.25 \text{ m s}^{-2}$	(1 mark)	$t = 0.56 \text{ s}$ (1 mark) (1 mark)				
2b	0.72 m		Distance = area under graph $= \frac{1}{2} \times 2.4 \times 0.6$ $= 0.72 \text{ m}$					
2c	Graph showing							
3a	2400J	$E_k = ?$ $E_k = \frac{1}{2} m v^2$ $E_k = \frac{1}{2} \times 75 \times (8.0)^2$ $E_k = 2400 \text{ J}$	$m = 75 \text{ kg}$ m v^2 (1 mark) $(8.0)^2$ (1 mark) (1 mark)	$v = 8.0 \text{ m s}^{-1}$				

3b(i)	3.3 m	$E_p = 2400 \text{ J}$ $E_p = m \times g$ $2400 = 75 \times 9.8 \times h$ $h = 3.3 \text{ m}$	$m = 75 \text{ kg}$ $g = 9.8 \text{ N kg}^{-1}$ $h = ?$ (1 mark)							
3b(ii)	One answer from:	<u>Energy</u> lost (as heat and sound) due to <ul style="list-style-type: none"> friction air resistance 								
3c(i)		A suitable curved path where the bike does not increase in height. <ul style="list-style-type: none"> • The bike will fall vertically faster the further it falls due to gravity • The horizontal velocity will remain the same 								
3c(ii)	3.9 m s ⁻¹	$a = 9.8 \text{ m s}^{-2}$ $v = ?$ $u = 0 \text{ m s}^{-1}$ $t = 0.40 \text{ s}$ $a = \frac{v - u}{t}$ $9.8 = \frac{v - 0}{0.40}$ $9.8 \times 0.40 = v - 0$ $3.9 \text{ m s}^{-1} = v$	(1 mark)							
4a(i)	2.28x10 ¹¹ m	$d = 1.5 \times 10^{11} \times 1.52$ $d = 2.28 \times 10^{11} \text{ m}$								
4a(ii)	760 s	$d = 2.28 \times 10^{11} \text{ m}$ $v = 3.0 \times 10^8 \text{ m s}^{-1}$ $t = ?$ $d = v \times t$ $2.28 \times 10^{11} = 3.0 \times 10^8 \times t$ $t = 760 \text{ s}$	(1 mark)							
4b(i)	One answer from:	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33.33%;">solar cells</td> <td style="width: 33.33%;">solar panels</td> <td style="width: 33.33%;">generator (RTG)</td> </tr> <tr> <td colspan="2">nuclear reactors</td> <td>radioisotope thermoelectric</td> </tr> </table>		solar cells	solar panels	generator (RTG)	nuclear reactors		radioisotope thermoelectric	
solar cells	solar panels	generator (RTG)								
nuclear reactors		radioisotope thermoelectric								
4b(ii)	One answer from:	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33.33%;">Fuel load on take-off</td> <td style="width: 33.33%;">Pressure differential</td> <td style="width: 33.33%;">Re-entry through an atmosphere</td> </tr> <tr> <td colspan="2">Manoeuvring in zero friction environment</td> <td>Potential exposure to radiation</td> </tr> </table>		Fuel load on take-off	Pressure differential	Re-entry through an atmosphere	Manoeuvring in zero friction environment		Potential exposure to radiation	
Fuel load on take-off	Pressure differential	Re-entry through an atmosphere								
Manoeuvring in zero friction environment		Potential exposure to radiation								
5	Answer to include:	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33.33%;">1 mark</td> <td style="width: 33.33%;">2 marks</td> <td style="width: 33.33%;">3 marks</td> </tr> </table>	1 mark	2 marks	3 marks	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33.33%;">Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.</td> <td style="width: 33.33%;">Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.</td> <td style="width: 33.33%;">Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.</td> </tr> </table>		Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.	Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.	Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.
1 mark	2 marks	3 marks								
Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.	Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.	Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.								
6a	3.6 V	$V_s = 4.0 \text{ V}$ $V_2 = ?$ $R_1 = 2.0 \Omega$ $R_2 = 18 \Omega$ $V_2 = \frac{R_2}{R_1 + R_2} \times V_s$ $V_2 = \frac{18}{18 + 2.0} \times 4.0$ $V_2 = 3.6 \text{ V}$	(1 mark)							
6b(i)	One answer from:	To $\left[\begin{array}{l} \text{reduce} \\ \text{limit} \end{array} \right]$ the current (in the LED) Also accepted: <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 50%;">To reduce the voltage across the LED</td> <td style="width: 50%;">To protect/prevent damage to the LED</td> </tr> </table>		To reduce the voltage across the LED	To protect/prevent damage to the LED					
To reduce the voltage across the LED	To protect/prevent damage to the LED									
6b(ii)	72 Ω	Each branch of circuit has same voltage = 3.4V. Voltage of 1.6 V is across each LED $\therefore 3.4V - 1.6V = 1.8 \text{ V}$ across each resistor $V = 1.8 \text{ V}$ $I = 25 \text{ mA} = 25 \times 10^{-3} \text{ A}$ $R = ?$ $V = I \times R$ $1.8 = 25 \times 10^{-3} \times R$ $R = 72 \Omega$								

6c	2900 C	$Q = ? \quad I = 0.135 \text{ A} \quad t = 6.0 \text{ hours.} = 6.0 \times 60 \times 60$ $Q = I \times t \quad (1 \text{ mark})$ $Q = 0.135 \times 6.0 \times 60 \times 60 \quad (1 \text{ mark})$ $Q = 2900 \text{ C} \quad (1 \text{ mark})$																												
7	Answer to include:	<table border="1" style="width: 100%;"> <tr> <td style="width: 33.33%; text-align: center;">1 mark</td> <td style="width: 33.33%; text-align: center;">2 marks</td> <td style="width: 33.33%; text-align: center;">3 marks</td> </tr> <tr> <td>Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.</td> <td>Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.</td> <td>Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.</td> </tr> </table>	1 mark	2 marks	3 marks	Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.	Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.	Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.																						
1 mark	2 marks	3 marks																												
Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.	Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.	Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.																												
8a(i)	5400 $\text{kJ kg}^{-1} \text{ }^{\circ}\text{C}^{-1}$	$E = 21600 \text{ J} \quad c = ? \quad m = 0.50 \text{ kg} \quad \Delta T = 24^{\circ}\text{C} - 16^{\circ}\text{C} = 8^{\circ}\text{C}$ $E = c \times m \times \Delta T \quad (1 \text{ mark})$ $21600 = c \times 0.50 \times 8 \quad (1 \text{ mark})$ $c = 5400 \text{ kJ kg}^{-1} \text{ }^{\circ}\text{C}^{-1} \quad (1 \text{ mark})$																												
8b(ii)	One answer from:	<p style="text-align: center;">Heat (energy) is lost to the surroundings/to air</p> <p style="text-align: center;">or some of the heat (energy) is used to heat up the heater/beaker.</p>																												
8b	450 s	$P = ? \quad I = 4.0 \text{ A} \quad V = 12\text{V}$ $P = I \times V \quad (1 \text{ mark})$ $P = 4.0 \times 12 \quad (1 \text{ mark})$ $P = 48 \text{ W} \quad (1 \text{ mark})$ $E = 21600 \text{ J} \quad t = ?$ $P = \frac{E}{t} \quad (1 \text{ mark})$ $48 = \frac{21600}{t} \quad (1 \text{ mark})$ $t = 450 \text{ s} \quad (1 \text{ mark})$																												
8c	Answer to include:	<table border="1" style="width: 100%;"> <tr> <td style="width: 33.33%; text-align: center;">1 mark</td> <td style="width: 66.67%; text-align: center;">Measure the mass of water evaporated</td> </tr> <tr> <td style="width: 33.33%; text-align: center;">1 mark</td> <td style="width: 66.67%; text-align: center;">Measure the energy supplied</td> </tr> <tr> <td style="width: 33.33%; text-align: center;">1 mark</td> <td style="width: 66.67%; text-align: center;">$E_h = ml$</td> </tr> </table>	1 mark	Measure the mass of water evaporated	1 mark	Measure the energy supplied	1 mark	$E_h = ml$																						
1 mark	Measure the mass of water evaporated																													
1 mark	Measure the energy supplied																													
1 mark	$E_h = ml$																													
9a(i)	One of the 3 methods shown:	<p>2 marks for using 2 or more sets of data to work out $\frac{p}{T}$ values. ($\frac{T}{p}$ also acceptable)</p> <table border="1" style="width: 100%;"> <tr> <td style="width: 25%;">$\frac{p}{T} = \frac{121 \times 10^3}{323} = 375$</td> <td style="width: 25%;">$\frac{p}{T} = \frac{124 \times 10^3}{333} = 372$</td> <td style="width: 25%;">$\frac{p}{T} = \frac{128 \times 10^3}{343} = 373$</td> <td style="width: 25%;">$\frac{p}{T} = \frac{132 \times 10^3}{353} = 374$</td> </tr> </table> <p>1 mark for a statement of relationship: $\frac{p}{T} = \text{constant}$</p> <p style="text-align: center;">or</p> <table border="1" style="width: 100%;"> <tr> <td style="width: 50%; text-align: center;">Alternative Method 1:</td> <td style="width: 50%; text-align: center;">Alternative Method 2: Graphical Method</td> </tr> <tr> <td style="text-align: center;">Use of $\frac{p_1}{T_1} = \frac{p_2}{T_2}$ to verify relationship</td> <td style="text-align: center;">Graph drawn on graph paper with</td> </tr> <tr> <td style="text-align: center;">1 mark: all four sets of data (min 3 calculations)</td> <td style="text-align: center;">1 mark: Suitable scales, labels and units</td> </tr> <tr> <td style="text-align: center;">1 mark: all calculations correct</td> <td style="text-align: center;">1 mark: All points plotted accurately</td> </tr> <tr> <td style="text-align: center;">1 mark: Relationship stated and supported</td> <td style="text-align: center;">1 mark: relationship stated</td> </tr> </table>	$\frac{p}{T} = \frac{121 \times 10^3}{323} = 375$	$\frac{p}{T} = \frac{124 \times 10^3}{333} = 372$	$\frac{p}{T} = \frac{128 \times 10^3}{343} = 373$	$\frac{p}{T} = \frac{132 \times 10^3}{353} = 374$	Alternative Method 1:	Alternative Method 2: Graphical Method	Use of $\frac{p_1}{T_1} = \frac{p_2}{T_2}$ to verify relationship	Graph drawn on graph paper with	1 mark: all four sets of data (min 3 calculations)	1 mark: Suitable scales, labels and units	1 mark: all calculations correct	1 mark: All points plotted accurately	1 mark: Relationship stated and supported	1 mark: relationship stated														
$\frac{p}{T} = \frac{121 \times 10^3}{323} = 375$	$\frac{p}{T} = \frac{124 \times 10^3}{333} = 372$	$\frac{p}{T} = \frac{128 \times 10^3}{343} = 373$	$\frac{p}{T} = \frac{132 \times 10^3}{353} = 374$																											
Alternative Method 1:	Alternative Method 2: Graphical Method																													
Use of $\frac{p_1}{T_1} = \frac{p_2}{T_2}$ to verify relationship	Graph drawn on graph paper with																													
1 mark: all four sets of data (min 3 calculations)	1 mark: Suitable scales, labels and units																													
1 mark: all calculations correct	1 mark: All points plotted accurately																													
1 mark: Relationship stated and supported	1 mark: relationship stated																													
9a(ii)	Answer to include:	<table border="1" style="width: 100%;"> <tr> <td style="width: 33.33%; text-align: center;">1 mark</td> <td style="width: 66.67%; text-align: center;">The increase in temperature increases the kinetic energy of the gas particles</td> </tr> <tr> <td style="width: 33.33%; text-align: center;">1 mark</td> <td style="width: 66.67%; text-align: center;">the particles move faster</td> </tr> <tr> <td style="width: 33.33%; text-align: center;">1 mark</td> <td style="width: 66.67%; text-align: center;">The particles hit the container/walls more frequently</td> </tr> <tr> <td style="width: 33.33%; text-align: center;">1 mark</td> <td style="width: 66.67%; text-align: center;">The particles hit the container/walls with greater force</td> </tr> </table>	1 mark	The increase in temperature increases the kinetic energy of the gas particles	1 mark	the particles move faster	1 mark	The particles hit the container/walls more frequently	1 mark	The particles hit the container/walls with greater force																				
1 mark	The increase in temperature increases the kinetic energy of the gas particles																													
1 mark	the particles move faster																													
1 mark	The particles hit the container/walls more frequently																													
1 mark	The particles hit the container/walls with greater force																													
9a(iii)	83 kPa – 89 kPa	<table border="1" style="width: 100%;"> <tr> <td style="width: 20%; text-align: center;">Temperature (K)</td> <td style="width: 15%; text-align: center;">253</td> <td style="width: 15%; text-align: center;">273</td> <td style="width: 15%; text-align: center;">293</td> <td style="width: 15%; text-align: center;">313</td> <td style="width: 15%; text-align: center;">333</td> <td style="width: 15%; text-align: center;">353</td> </tr> <tr> <td style="text-align: center;">Pressure (kPa)</td> <td style="text-align: center;">-</td> <td style="text-align: center;">-</td> <td style="text-align: center;">101</td> <td style="text-align: center;">107</td> <td style="text-align: center;">116</td> <td style="text-align: center;">122</td> </tr> <tr> <td style="text-align: center;">Difference</td> <td style="text-align: center;">(7)</td> <td style="text-align: center;">(7)</td> <td style="text-align: center;">6</td> <td style="text-align: center;">9</td> <td style="text-align: center;">6</td> <td style="text-align: center;">-</td> </tr> <tr> <td style="text-align: center;">Estimate</td> <td style="text-align: center;">87</td> <td style="text-align: center;">94</td> <td style="text-align: center;">-</td> <td style="text-align: center;">-</td> <td style="text-align: center;">-</td> <td style="text-align: center;">-</td> </tr> </table>	Temperature (K)	253	273	293	313	333	353	Pressure (kPa)	-	-	101	107	116	122	Difference	(7)	(7)	6	9	6	-	Estimate	87	94	-	-	-	-
Temperature (K)	253	273	293	313	333	353																								
Pressure (kPa)	-	-	101	107	116	122																								
Difference	(7)	(7)	6	9	6	-																								
Estimate	87	94	-	-	-	-																								
9b	Answer to include	<table border="1" style="width: 100%;"> <tr> <td style="width: 33.33%; text-align: center;">Marks</td> <td style="width: 33.33%; text-align: center;">1st mark</td> <td style="width: 33.33%; text-align: center;">2nd mark</td> </tr> <tr> <td style="text-align: center;">Route 1</td> <td style="text-align: center;">Have more of the flask under the water</td> <td style="text-align: center;">so that the gas is at the same temperature/evenly heated</td> </tr> <tr> <td style="text-align: center;">Route 2</td> <td style="text-align: center;">Reduce the length/diameter/volume of the connecting tube</td> <td style="text-align: center;">so that the gas is at the same temperature/evenly heated</td> </tr> </table>	Marks	1 st mark	2 nd mark	Route 1	Have more of the flask under the water	so that the gas is at the same temperature/evenly heated	Route 2	Reduce the length/diameter/volume of the connecting tube	so that the gas is at the same temperature/evenly heated																			
Marks	1 st mark	2 nd mark																												
Route 1	Have more of the flask under the water	so that the gas is at the same temperature/evenly heated																												
Route 2	Reduce the length/diameter/volume of the connecting tube	so that the gas is at the same temperature/evenly heated																												

10a	6.3 m	$D = ?$ $v = 3 \times 10^8 \text{ m s}^{-1}$ $d = v \times t$ (1 mark) $d = 3.0 \times 10^8 \times 2.1 \times 10^{-8}$ (1 mark) $d = 6.3 \text{ m}$ (1 mark)	$t = 2.1 \times 10^{-8} \text{ s}$								
10b(i)	One answer from:	vibrations/oscillations are in the same direction as the energy transfer.	vibrations/oscillations are in the same direction as the wave is travelling.								
10b(ii)	0.068m	<p>No. of wavelengths shown = 4 (each triple line represents the beginning/end of a wave)</p> $\lambda = \frac{0.272 \text{ m}}{4} = 0.068 \text{ m}$									
10b(iii)	5000 Hz	$f = ?$ $v = 340 \text{ m s}^{-1}$ $v = f \times \lambda$ (1 mark) $340 = f \times 0.068$ (1 mark) $f = 5000 \text{ Hz}$ (1 mark)	$\lambda = 0.068 \text{ m}$								
11a	One answer from:	<table border="1"> <tr> <td>photodiode</td> <td>phototransistor</td> <td>thermistor</td> <td>LDR</td> </tr> <tr> <td>thermocouple</td> <td>thermopile</td> <td>CCD</td> <td></td> </tr> </table>		photodiode	phototransistor	thermistor	LDR	thermocouple	thermopile	CCD	
photodiode	phototransistor	thermistor	LDR								
thermocouple	thermopile	CCD									
11b	0.90 Hz	<p>70% of infrared light received falls in the medium category</p> <table border="1"> <tr> <th>Number of Raindrops</th> <th>No. of times wipers move back and forth per minute</th> </tr> <tr> <td>Low</td> <td>18</td> </tr> <tr> <td>Medium</td> <td>54</td> </tr> <tr> <td>High</td> <td>78</td> </tr> </table>	Number of Raindrops	No. of times wipers move back and forth per minute	Low	18	Medium	54	High	78	<p>Medium category gives 54 Wipes per minute</p> <p>Calculation of frequency</p> $N = 54 \text{ (1mark)}$ $f = \frac{N}{t} \text{ (1mark)}$ $f = \frac{54}{60} \text{ (1mark)}$ $f = 0.90 \text{ Hz}$
Number of Raindrops	No. of times wipers move back and forth per minute										
Low	18										
Medium	54										
High	78										
11c(i)A	Normal drawn as shown in diagram										
11c(i)B	Angle of incidence and angle of refraction drawn as shown in diagram										
11c(ii)	Answer to include:	<table border="1"> <tr> <td>1 mark</td> <td>Wavelength in water is greater than in glass</td> </tr> <tr> <td>1 mark</td> <td>Speed of light in water is greater than in glass</td> </tr> </table>	1 mark	Wavelength in water is greater than in glass	1 mark	Speed of light in water is greater than in glass					
1 mark	Wavelength in water is greater than in glass										
1 mark	Speed of light in water is greater than in glass										
12a	One answer from:	Fast electron	high-energy electron								
12b	Answer to include:	<table border="1"> <tr> <td>1 mark</td> <td>Activity of tritium source is less or Fewer beta particles emitted per second</td> </tr> <tr> <td>1 mark</td> <td>Less light produced</td> </tr> </table>	1 mark	Activity of tritium source is less or Fewer beta particles emitted per second	1 mark	Less light produced					
1 mark	Activity of tritium source is less or Fewer beta particles emitted per second										
1 mark	Less light produced										

12c(i)	0.034 J	$D = 0.40 \text{ mGy} = 0.40 \times 10^{-3} \text{ Gy}$ $D = \frac{E}{m}$ $0.40 \times 10^{-3} = \frac{E}{85}$ $E = 0.034 \text{ J}$	$E = ?$ (1 mark)	$m = 85 \text{ kg}$
12c(ii)	$4.0 \times 10^{-4} \text{ Sv}$	$H = ?$ $D = 0.40 \text{ mGy} = 0.40 \times 10^{-3} \text{ Gy}$ $W_r = 1$ $H = D \times W_r$ $H = 0.40 \times 10^{-3} \times 1$ $H = 4.0 \times 10^{-4} \text{ Sv}$	(1 mark)	(1 mark)
13a(i)	One answer from:	The counter reading will include the source and background count	Background will need to be subtracted	To measure/determine the count rate due to the source
13a(ii)	Any suitable source			
13b(i)	Line graph showing:	Suitable scales, labels and units	All points plotted Accurately to \pm half a division	Best fit curve
13b(ii)	30 minutes	Take any halving on the <i>Corrected Count Rate</i> axis and extrapolate the time taken from these point on the <i>Time</i> axis		
13c(i)	Answer to include:	1 mark 1 mark	Reduce the distance between the detector and the source Alpha is absorbed by a few cm of air/range in air is a few cm. or Alpha has a shorter range than Gamma	
13c(ii)	7800	$A = 520 \text{ Bq}$ $N = ?$ $t = 15 \text{ s}$ $A = \frac{N}{t}$ $520 = \frac{N}{15}$ $N = 7800$	(1 mark)	(1 mark)