

Past Papers

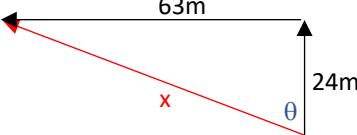
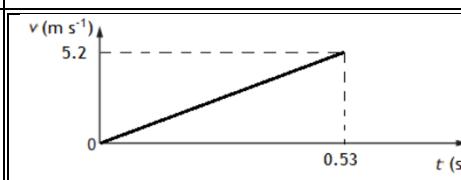
Nat 5

Physics

2023

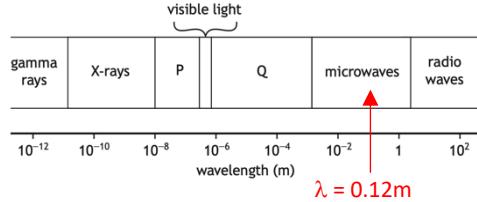
Marking Scheme

Grade Awarded	Mark Required		% candidates achieving grade
	/100	%	
A	65+	65%	34.7%
B	52+	52%	19.8%
C	40+	40%	16.4%
D	27+	27%	15.5%
No award	<27	<27%	13.6%

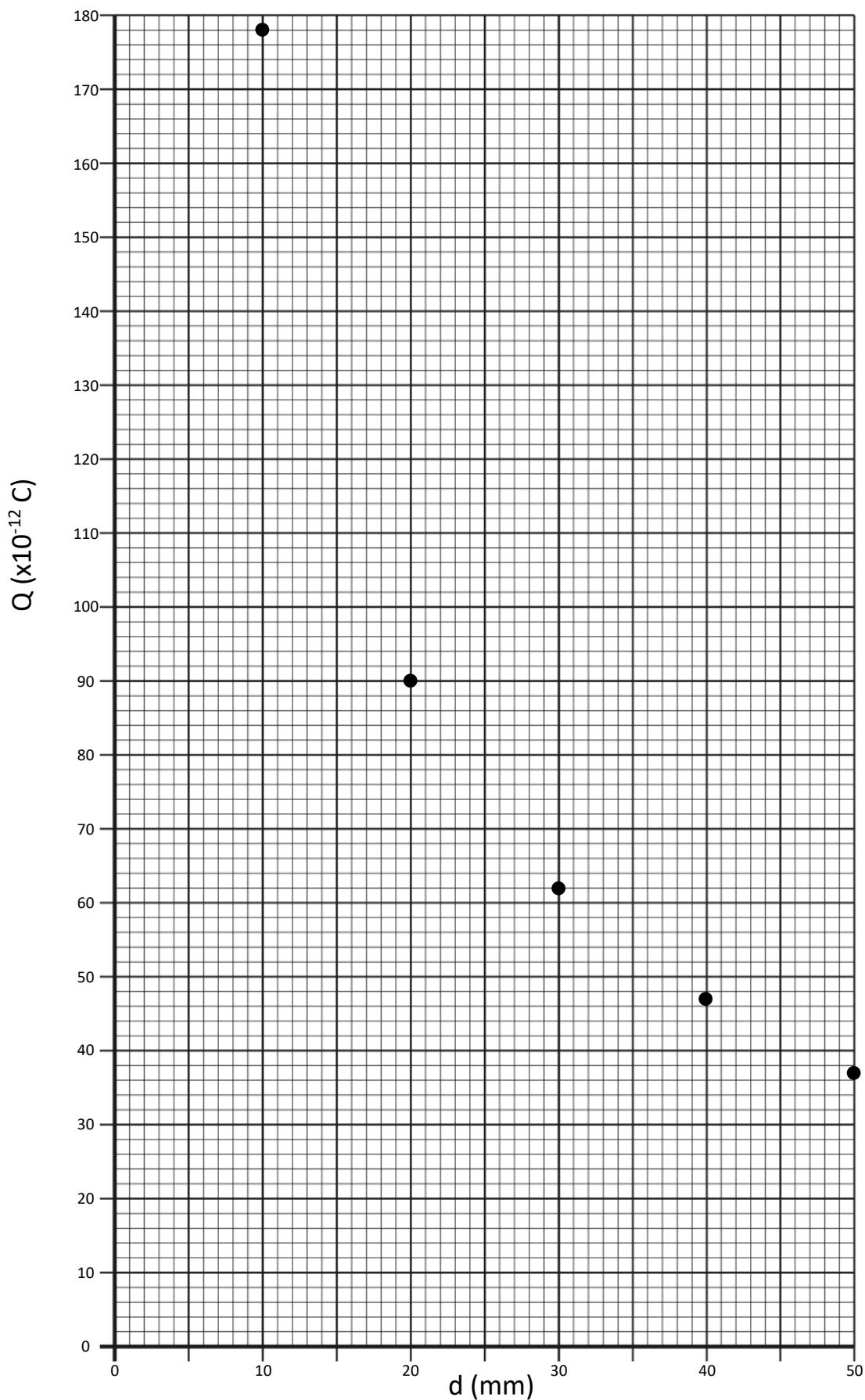


Section:	Multiple Choice	Extended Answer	Assignment
Average Mark:	14.5	/25	38.8 /75 No Assignment in 2023

2023 Nat5 Physics Marking Scheme

Question	Answer	% Correct	Physics Covered																												
1	D	82	<table border="1"> <thead> <tr> <th>X</th><th>Y</th><th>Z</th></tr> </thead> <tbody> <tr> <td>Vectors</td><td>force</td><td>acceleration</td></tr> <tr> <td>Vectors have both magnitude and direction while scalars only have magnitude</td><td>Force is a vector quantity with magnitude and direction.</td><td>Acceleration is a vector quantity with magnitude and direction.</td></tr> </tbody> </table>	X	Y	Z	Vectors	force	acceleration	Vectors have both magnitude and direction while scalars only have magnitude	Force is a vector quantity with magnitude and direction.	Acceleration is a vector quantity with magnitude and direction.																			
X	Y	Z																													
Vectors	force	acceleration																													
Vectors have both magnitude and direction while scalars only have magnitude	Force is a vector quantity with magnitude and direction.	Acceleration is a vector quantity with magnitude and direction.																													
2	D	44	<input checked="" type="checkbox"/> A $t_1 + t_2$ does not measure the time taken for the card to pass through light gate Q <input checked="" type="checkbox"/> B $t_1 + t_2$ does not measure the time taken for the card to pass through light gate Q <input checked="" type="checkbox"/> C this would measure the instantaneous speed through light gate P not light gate Q <input checked="" type="checkbox"/> D this measures the instantaneous speed through light gate Q <input checked="" type="checkbox"/> E this does not measure the instantaneous speed at any point in the experiment																												
3	C	62	<table border="1"> <thead> <tr> <th>Area 1</th><th>Area 2</th><th>Area 3</th></tr> </thead> <tbody> <tr> <td>Distance = area under graph</td><td>Distance = area under graph</td><td>Distance = area under graph</td></tr> <tr> <td>$= 2.0 \times 4.0$</td><td>$= \frac{1}{2} \times 6.0 \times 2.0$</td><td>$= 6.0 \times 4.0$</td></tr> <tr> <td>$= 8\text{m}$</td><td>$= 6\text{m}$</td><td>$= 24\text{m}$</td></tr> <tr> <td colspan="3">Total Distance = $8 + 6 = 24\text{m} = 38\text{m}$</td></tr> </tbody> </table>	Area 1	Area 2	Area 3	Distance = area under graph	Distance = area under graph	Distance = area under graph	$= 2.0 \times 4.0$	$= \frac{1}{2} \times 6.0 \times 2.0$	$= 6.0 \times 4.0$	$= 8\text{m}$	$= 6\text{m}$	$= 24\text{m}$	Total Distance = $8 + 6 = 24\text{m} = 38\text{m}$															
Area 1	Area 2	Area 3																													
Distance = area under graph	Distance = area under graph	Distance = area under graph																													
$= 2.0 \times 4.0$	$= \frac{1}{2} \times 6.0 \times 2.0$	$= 6.0 \times 4.0$																													
$= 8\text{m}$	$= 6\text{m}$	$= 24\text{m}$																													
Total Distance = $8 + 6 = 24\text{m} = 38\text{m}$																															
4	D	28	$E_w = ?$ $F = 6.0\text{N}$ $d = 3.0\text{m}$ $E_w = F \times d$ $E_w = 6.0 \times 3.0$ $E_w = 18\text{J}$																												
5	B	40	<table border="1"> <thead> <tr> <th colspan="2">Kinetic energy at 2.0 m s^{-1}</th><th colspan="2">Kinetic energy at 6.0 m s^{-1}</th></tr> </thead> <tbody> <tr> <td>$E_k = ?$</td><td>$m = 4.0\text{ kg}$</td><td>$v = 2.0\text{ m s}^{-1}$</td><td>$E_k = ?$</td></tr> <tr> <td>$E_k = \frac{1}{2} \times m \times v^2$</td><td></td><td></td><td>$m = 4.0\text{ kg}$</td></tr> <tr> <td>$E_k = \frac{1}{2} \times 4.0 \times (2.0)^2$</td><td></td><td></td><td>$v = 6.0\text{ m s}^{-1}$</td></tr> <tr> <td>$E_k = \frac{1}{2} \times 4.0 \times 4.0$</td><td></td><td></td><td>$E_k = \frac{1}{2} \times m \times v^2$</td></tr> <tr> <td>$E_k = 8.0\text{ J}$</td><td></td><td></td><td>$E_k = \frac{1}{2} \times 4.0 \times (6.0)^2$</td></tr> <tr> <td colspan="4">$E_k = 72.0\text{ J}$</td></tr> </tbody> </table> <p>Increase in kinetic energy = $72.0\text{ J} - 8.0\text{ J} = 64\text{ J}$</p>	Kinetic energy at 2.0 m s^{-1}		Kinetic energy at 6.0 m s^{-1}		$E_k = ?$	$m = 4.0\text{ kg}$	$v = 2.0\text{ m s}^{-1}$	$E_k = ?$	$E_k = \frac{1}{2} \times m \times v^2$			$m = 4.0\text{ kg}$	$E_k = \frac{1}{2} \times 4.0 \times (2.0)^2$			$v = 6.0\text{ m s}^{-1}$	$E_k = \frac{1}{2} \times 4.0 \times 4.0$			$E_k = \frac{1}{2} \times m \times v^2$	$E_k = 8.0\text{ J}$			$E_k = \frac{1}{2} \times 4.0 \times (6.0)^2$	$E_k = 72.0\text{ J}$			
Kinetic energy at 2.0 m s^{-1}		Kinetic energy at 6.0 m s^{-1}																													
$E_k = ?$	$m = 4.0\text{ kg}$	$v = 2.0\text{ m s}^{-1}$	$E_k = ?$																												
$E_k = \frac{1}{2} \times m \times v^2$			$m = 4.0\text{ kg}$																												
$E_k = \frac{1}{2} \times 4.0 \times (2.0)^2$			$v = 6.0\text{ m s}^{-1}$																												
$E_k = \frac{1}{2} \times 4.0 \times 4.0$			$E_k = \frac{1}{2} \times m \times v^2$																												
$E_k = 8.0\text{ J}$			$E_k = \frac{1}{2} \times 4.0 \times (6.0)^2$																												
$E_k = 72.0\text{ J}$																															
6	D	58	$T = ?$ $\alpha = 0.290$ $d = 1\text{ AU}$ <table border="1"> <tr> <td>$T^2 =$</td> <td>280^2</td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </table>	$T^2 =$	280^2																										
$T^2 =$	280^2																														
7	A	67	<input checked="" type="checkbox"/> A Asteroid – object orbiting a star which is smaller than a dwarf planet <input checked="" type="checkbox"/> B Dwarf Planet – object which orbits a star but not large enough to be classed as a small planet <input checked="" type="checkbox"/> C Exoplanet – planet orbiting around a star outside our solar system <input checked="" type="checkbox"/> D Planet – large ball of matter. Orbiting a star which does not emit light <input checked="" type="checkbox"/> E Star – large ball of matter undergoing nuclear fusion emitting light and EM radiation																												


8	D	48	Unwards force = 2200N Downwards force = $mg = 350\text{kg} \times 9.81 \text{N kg}^{-1} = 3433.5 \text{N}$ Unbalanced force = $2200\text{N} - 3433.5\text{N} = 905\text{N}$ upwards As space vehicle is decending when rockets fire then the vehicle will still descend to the surface but there is a decrease in speed as there is an unbalanced force upwards.						
9	E	79	<input checked="" type="checkbox"/> A A negative particle P will deflect away from a negatively charged plate R <input checked="" type="checkbox"/> B If particle P had no charge it would pass through undeflected through electric field <input checked="" type="checkbox"/> C If particle P had no charge it would pass through undeflected through electric field <input checked="" type="checkbox"/> D A positive particle P will deflect away from a positively charged plate R <input checked="" type="checkbox"/> E A positive particle P will bend towards a negatively charged plate R						
10	C	81	<input checked="" type="checkbox"/> A Negative charges (electrons) move in both a.c. and d.c. current <input checked="" type="checkbox"/> B In a.c. current, direction of current reverses constantly back and forth <input checked="" type="checkbox"/> C In a.c. current, charges (electrons) reverse intervals at regular interval <input checked="" type="checkbox"/> D Only negative charges (electrons) move in a current in both a.c. and d.c. current <input checked="" type="checkbox"/> E The quantity of current rises and falls during a.c. current						
11	D	35	Voltage across resistor R = $5.0\text{V} - 2.2\text{V} = 2.8\text{V}$ Current in Resistor R = $10.0 \text{ mA} = 0.0100 \text{ A}$ $R = \frac{V}{I} = \frac{2.8}{0.0100} = 280 \Omega$						
12	A	58	$V_s = 24 \text{ V}$ $V_2 = ?$ $R_1 = 2.4 \text{ k}\Omega$ $R_2 = 1.2 \text{ k}\Omega$ $V_2 = \frac{R_2}{R_1 + R_2} \times V_s$ $V_2 = \frac{1.2}{2.4 + 1.2} \times 24$ $V_2 = 8 \text{ V}$						
13	C	44	<input checked="" type="checkbox"/> A Variable resistor is at bottom of circuit so motor will switch on when light is high. <input checked="" type="checkbox"/> B circuit contains thermistor which would make the circuit dependent on temperature <input checked="" type="checkbox"/> C Variable resistor is at top of circuit and circuit contains LDR to switch on motor on low light <input checked="" type="checkbox"/> D circuit contains thermistor which would make the circuit dependent on temperature not light <input checked="" type="checkbox"/> E circuit contains thermistor which would make the circuit dependent on temperature not light						
14	E	70	$P = 250 \text{ W}$ $E = ?$ $t = 2 \text{ hours} = 2 \times 60 \times 60 \text{ s}$ $P = \frac{E}{t} \therefore 250 = \frac{E}{2 \times 60 \times 60} \therefore E = 250 \times 2 \times 60 \times 60 = 1860000 \text{ J}$						
15	C	64	From graph: When Power P = 1 W then Resistance R = 4 Ω $P = \frac{V^2}{R} \therefore 1 = \frac{V^2}{4} \therefore V^2 = 4$ $\therefore V = 2 \text{ V}$						
16	C	64	<table border="1"> <tr> <td>Statement I - Correct</td> <td>Statement II - Correct</td> <td>Statement III - Incorrect</td> </tr> <tr> <td>The mass of the copper block gives the mass in the equation $E_h = cm\Delta T$</td> <td>The initial and final temperatures are needed to calculate ΔT for the equation $E_h = cm\Delta T$</td> <td>The power supply does not give the energy supplied. Joulemeter provides E_h for the equation $E_h = cm\Delta T$</td> </tr> </table>	Statement I - Correct	Statement II - Correct	Statement III - Incorrect	The mass of the copper block gives the mass in the equation $E_h = cm\Delta T$	The initial and final temperatures are needed to calculate ΔT for the equation $E_h = cm\Delta T$	The power supply does not give the energy supplied. Joulemeter provides E_h for the equation $E_h = cm\Delta T$
Statement I - Correct	Statement II - Correct	Statement III - Incorrect							
The mass of the copper block gives the mass in the equation $E_h = cm\Delta T$	The initial and final temperatures are needed to calculate ΔT for the equation $E_h = cm\Delta T$	The power supply does not give the energy supplied. Joulemeter provides E_h for the equation $E_h = cm\Delta T$							
17	B	57	$E = ?$ $m = 3.5 \text{ kg}$ $l = 3.34 \times 10^5 \text{ J kg}^{-1}$ $E = m \times l$ $E = 3.5 \times 3.34 \times 10^5$ $E = 1.2 \times 10^6 \text{ J}$						

18	B	65	$P = 2.0 \times 10^8 \text{ Pa}$ $F = 5.0 \text{ kN} = 5000\text{N}$ $P = \frac{F}{A}$ $2 \times 10^8 = \frac{5000}{A}$ $A = 2.5 \times 10^{-5} \text{ m}^2$	A = ?						
19	A	56	<input checked="" type="checkbox"/> A Pressure & temperature are directly proportional in <i>pressure-temperature Law calculations</i> <input checked="" type="checkbox"/> B Pressure & temperature are directly proportional in <i>pressure-temperature Law calculations</i> <input checked="" type="checkbox"/> C The volume is constant in the bhyo <input checked="" type="checkbox"/> D Temperatures used in <i>pressure-temperature Law calculations</i> are measured in Kelvin <input checked="" type="checkbox"/> E Temperatures used in <i>pressure-temperature Law calculations</i> are measured in Kelvin							
20	C	48	$p_1 = 5.0 \times 10^5 \text{ Pa}$ $V_1 = 2.2 \text{ m}^3$ $T_1 = 27^\circ\text{C} = 320 \text{ K}$ $p_2 = 5.5 \times 10^5 \text{ Pa}$ $V_2 = ?$ $T_2 = 54^\circ\text{C} = 370 \text{ K}$ $\frac{p_1}{T_1} = \text{constant} = \frac{5.0 \times 10^5}{320} \times 2.2 = 3437.5$ $\frac{p_2}{T_2} = \text{constant} = \frac{5.5 \times 10^5}{370} \times V_2 = 3437.5$ $V_2 = \frac{3437.5 \times 370}{5.5 \times 10^5}$ $V_2 = 2.3 \text{ m}^3$							
21	B	58	<table border="1"> <thead> <tr> <th>Amplitude</th> <th>Frequency</th> </tr> </thead> <tbody> <tr> <td> $\text{Amplitude} = \frac{0.4}{2} = 0.2\text{m}$ </td> <td> $\text{Wavelength} = \frac{12\text{m}}{2} = 6\text{m}$ $f = \frac{v}{\lambda} = \frac{3.0}{6} = 0.5\text{Hz}$ </td> </tr> </tbody> </table>	Amplitude	Frequency	$\text{Amplitude} = \frac{0.4}{2} = 0.2\text{m}$	$\text{Wavelength} = \frac{12\text{m}}{2} = 6\text{m}$ $f = \frac{v}{\lambda} = \frac{3.0}{6} = 0.5\text{Hz}$			
Amplitude	Frequency									
$\text{Amplitude} = \frac{0.4}{2} = 0.2\text{m}$	$\text{Wavelength} = \frac{12\text{m}}{2} = 6\text{m}$ $f = \frac{v}{\lambda} = \frac{3.0}{6} = 0.5\text{Hz}$									
22	E	69	<input checked="" type="checkbox"/> A wavelength should be same before and after barrier. <input checked="" type="checkbox"/> B ends of waves should curve as waves diffract and be longer than gap in barrier. <input checked="" type="checkbox"/> C boths sides of diffracted waves should be curved after the barrier <input checked="" type="checkbox"/> D this answer is clearly nonsense <input checked="" type="checkbox"/> E wavelength the same after barrier, ends of wave curve as wave diffracts in shadow area.							
23	A	41	<input checked="" type="checkbox"/> A Ray P has bent away from the normal as it has gone from a more dense medium to less dense <input checked="" type="checkbox"/> B Ray Q has not changed direction and has continued in a straight line from the glass <input checked="" type="checkbox"/> C Ray R is on wrong side of the normal <input checked="" type="checkbox"/> D Ray S is on wrong side of the normal <input checked="" type="checkbox"/> E Ray T is on wrong side of the normal							
24	E	65	$2.4 \times 10^4 \text{ Bq} \therefore 1 \text{ s} = 2.4 \times 10^4 \text{ decays} \therefore 15 \times 60 \text{ s} = 2.4 \times 10^4 \text{ decays} \times 15 \times 60 = 2.2 \times 10^7$							
25	B	62	<table border="1"> <thead> <tr> <th>Statement I - Incorrect</th> <th>Statement II - Correct</th> <th>Statement III - Incorrect</th> </tr> </thead> <tbody> <tr> <td>Nuclear <i>fission</i> is when a large nucleus splits into smaller nuclei</td> <td>At the very hot temperatures required for fusion to take place, containment of plasma is an issue</td> <td>Nuclear fusion takes place only at <i>high</i> temperatures</td> </tr> </tbody> </table>	Statement I - Incorrect	Statement II - Correct	Statement III - Incorrect	Nuclear <i>fission</i> is when a large nucleus splits into smaller nuclei	At the very hot temperatures required for fusion to take place, containment of plasma is an issue	Nuclear fusion takes place only at <i>high</i> temperatures	
Statement I - Incorrect	Statement II - Correct	Statement III - Incorrect								
Nuclear <i>fission</i> is when a large nucleus splits into smaller nuclei	At the very hot temperatures required for fusion to take place, containment of plasma is an issue	Nuclear fusion takes place only at <i>high</i> temperatures								


Question	Answer	Physics Covered									
1a(i)	67 m	<p>Horizontal displacement = 74m - 11m = 63m (WEST or 270) Vertical displacement = 38m - 14m = 24m (North or 000)</p> $x = \sqrt{(24)^2 + (63)^2}$ $x = \sqrt{576 + 3969}$ $x = \sqrt{4545}$ $x = 67 \text{ m}$									
1a(ii)	291	$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{63}{24} = 2.625 \therefore \theta = 69^\circ$ <p>Bearing = $360^\circ - 69^\circ = 291$</p>									
1b(i)	2.2 m s ⁻¹ at bearing 291	<p>$S = 67 \text{ m}$ $\bar{v} = ?$ $t = 31 \text{ s}$</p> $S = \bar{v} t$ $67 = \bar{v} \times 31$ $\bar{v} = 2.2 \text{ m s}^{-1}$ <p>(1 mark) (1 mark) (1 mark)</p>									
1b(ii)	<u>1 mark</u> <u>distance is greater than displacement</u> <u>1 mark</u> <u>same time taken</u>	<p>The distance travelled is greater than the displacement as in both the vertical and horizontal directions.</p> <table border="1"> <thead> <tr> <th>Direction</th> <th>Displacement</th> <th>Distance</th> </tr> </thead> <tbody> <tr> <td>Horizontal (West – East)</td> <td>$74\text{m} - 11\text{m} = 63\text{m}$</td> <td>$74\text{m} + 11\text{m} = 85\text{m}$</td> </tr> <tr> <td>Vertical (North – South)</td> <td>$38\text{m} - 14\text{m} = 24\text{m}$</td> <td>$38\text{m} + 14\text{m} = 52\text{m}$</td> </tr> </tbody> </table> <p>Because the total distance and the displacement take place over the same time period, the average velocity is less because the displacement is less before being divided by the time taken.</p>	Direction	Displacement	Distance	Horizontal (West – East)	$74\text{m} - 11\text{m} = 63\text{m}$	$74\text{m} + 11\text{m} = 85\text{m}$	Vertical (North – South)	$38\text{m} - 14\text{m} = 24\text{m}$	$38\text{m} + 14\text{m} = 52\text{m}$
Direction	Displacement	Distance									
Horizontal (West – East)	$74\text{m} - 11\text{m} = 63\text{m}$	$74\text{m} + 11\text{m} = 85\text{m}$									
Vertical (North – South)	$38\text{m} - 14\text{m} = 24\text{m}$	$38\text{m} + 14\text{m} = 52\text{m}$									
1c(i)	Working showing 0.18J	$E_p = ?$ $m = 0.0025 \text{ kg}$ $g = 9.8 \text{ N kg}^{-1}$ $h = 7.5 \text{ m}$ $E_p = m g h$ $E_p = 0.0025 \times 9.8 \times 7.5$ (1 mark) $E_p = 0.18 \text{ J}$									
1c(ii)	12 m s ⁻¹	$E_k = 0.18 \text{ J}$ $m = 0.0025 \text{ kg}$ $v = ?$ $E_k = \frac{1}{2} m v^2$ $0.18 = \frac{1}{2} \times 0.0025 \times v^2$ (1 mark) $v^2 = \sqrt{144}$ $v = 12 \text{ m s}^{-1}$ (1 mark)									
1c(iii)	One answer from:	<u>Energy</u> lost (as heat) due to <div style="display: flex; align-items: center;"> friction air resistance </div>									
2a		<p>A suitable curved path where the ball does not increase in height.</p> <ul style="list-style-type: none"> The stone will fall vertically faster the further it falls due to gravity The horizontal velocity will remain the same 									
2b(i)	5.2 m s ⁻¹	$a = 9.8 \text{ m s}^{-2}$ $v = ?$ $u = 0 \text{ m s}^{-1}$ $t = 0.53 \text{ s}$ $a = \frac{v - u}{t}$ (1 mark) $9.8 = \frac{v - 0}{0.53}$ (1 mark) $9.8 \times 0.53 = v - 0$ $5.2 \text{ m s}^{-1} = v$ (1 mark)									
2b(ii)	Graph showing:	<table border="1"> <thead> <tr> <th>1st Mark</th> <th>2nd Mark</th> </tr> </thead> <tbody> <tr> <td>Straight line</td> <td>Graph ends at (0.53, 5.2)</td> </tr> <tr> <td>Positive gradient</td> <td></td> </tr> <tr> <td>Starting at origin</td> <td></td> </tr> </tbody> </table>	1 st Mark	2 nd Mark	Straight line	Graph ends at (0.53, 5.2)	Positive gradient		Starting at origin		
1 st Mark	2 nd Mark										
Straight line	Graph ends at (0.53, 5.2)										
Positive gradient											
Starting at origin											

2b(iii)	1.4 m	Height dropped from = area under graph = $\frac{1}{2} \times 0.53 \times 5.2$ = 1.4 m	(1 mark) (1 mark) (1 mark)
2c(i)	0.43 m s ⁻²	$F_{\text{un}} = 54 \text{ N} - 22 \text{ N} = 32 \text{ N}$ $F = m a$ $32 = 74 \times a$ $a = 0.43 \text{ m s}^{-2}$	$m = 74 \text{ kg}$ $a = ?$
2c(ii)	Reduces friction or air resistance	The cyclist takes the full air resistance while the rider behind benefits from less air resistance as a result.	
3a	Answer to include:	1 mark Astra 1KR 1 mark it is a geostationary satellite or it has an orbital period of 24 hours or it is at an orbital altitude of 36 000 km	
3b	27N	$W = ?$ $m = 3.5 \text{ kg}$ $W = m \times g$ $W = 3.5 \times 7.7$ $W = 27 \text{ N}$	$g = 7.7 \text{ N kg}^{-1}$ (1 mark) (1 mark) (1 mark)
3c	Answer is Greater than 101 minutes and Less than 676 minutes	Satellite Orbital Altitude (km) Orbital Period UKube-1 825 101 minutes Satellite 1200 Longer than 101 minutes & shorter than 676 minutes Kosmos2460 19100 676 minutes	
4	Open ended question:	1 mark Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem. 2 marks Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem. 3 marks Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.	
5a	One answer from:	not affected by weather no (distortion from) atmosphere no light pollution can use telescope during the day	
5b	Hydrogen Calcium (both required for 1 mark)	hydrogen helium mercury calcium sodium star	All hydrogen lines in line spectra from star Some helium lines missing from star Some mercury lines missing from star All calcium lines in line spectra from star Some sodium lines missing from star
5c	working showing $3.2 \times 10^{18} \text{ m}$	$d = v \times t$ $d = 3.0 \times 10^8 \times 343 \times 365.25 \times 24 \times 60 \times 60$ $d = 3.2 \times 10^{18} \text{ m}$	(1 mark) (1 mark)
6a	0.20 A	Total Resistance when Switch S ₁ is closed = $36\Omega + 24\Omega = 60\Omega$ (1 mark) $V = 12 \text{ V}$ $I = ?$ $R = 60 \Omega$ $V = I R$ (1 mark) $12 = I \times 60$ (1 mark) $I = 0.20 \text{ A}$ (1 mark)	
6b(i)	3.2 Ω	Combine 2 parallel resistors $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$ (1 mark) $\frac{1}{R_T} = \frac{1}{36} + \frac{1}{36}$ (1 mark) $\frac{1}{R_T} = \frac{2}{36}$ $R_T = 18 \Omega$	Combine with series resistor $R_T = R_1 + R_2$ $R_T = 18 + 36$ (1 mark) $R_T = 42 \Omega$ (1 mark)

6b(ii)	Answer to include:	1 mark 1 mark	(Ammeter reading will be) greater Total circuit resistance will be less		
7a(i)	Graph showing:	1 mark Suitable scales, labels and units	1 mark All points plotted accurately to \pm half a division 1 mark Best fit curve		
7a(ii)	$74 \times 10^{-12} \text{ C}$				
7b	Any two from: (1 mark each)	Repeat measurements and average	Repeat measurements to identify outliers/rogue points	Increase the range of distances	Increase the number of different distances
8a(i)	2120 J	$E_h = ?$ $E = c \times m$ $E = 532 \times 1.90 \times 10^{-2}$ $E = 2120 \text{ J}$	$c = 532 \text{ J kg}^{-1} \text{ }^{\circ}\text{C}^{-1}$ $m = 1.90 \times 10^{-2} \text{ kg}$ $\Delta T = 235^{\circ}\text{C} - 25^{\circ}\text{C} = 210^{\circ}\text{C}$	ΔT (1 mark)	ΔT (1 mark)
8a(ii)	Heat (energy) lost to the surroundings.	Heat loss must be identified as being lost to the surroundings			
8b	Answer to include:	1 mark different (specific) heat capacity	1 mark different mass		
9a(i)	Force per unit area or Force per m^2	Pressure is calculated from equation $P = \frac{\text{Force}}{\text{Area}}$ and is defined as Force per unit area			
9a(ii)	$2.5 \times 10^{-3} \text{ m}^3$	$p_1 = 101 \text{ kPa}$ $p_2 = 92 \text{ kPa}$ (1 mark) $p_1 V_1 = p_2 V_2$	$V_1 = 2.3 \times 10^{-3} \text{ m}^3$ $V_2 = ?$		
9a(iii)	The (gas) particles collide with the walls (of the crisp packet).	Pressure is caused by the particles inside a gas colliding with the walls of their container the gas is in. The faster the gas particles collide with the walls of the container the higher the pressure.			
9b	$21 \mu\text{Sv}$	$\dot{H} = 6.0 \mu\text{Sv h}^{-1}$ $\dot{H} = \frac{H}{t}$ $6.0 = \frac{H}{3.5}$ $H = 21 \mu\text{Sv}$	$H = ?$ (1 mark)	$t = 3.5 \text{ hours}$	
10a	2.6 m	$d = ?$ $v = 240 \text{ m s}^{-1}$ $t = \frac{0.015\text{s}}{2} = 0.0075\text{s}$ $d = v \times t$ $d = 340 \times 0.0075$ $d = 2.6 \text{ m}$	(1 mark)	(1 mark)	
10b(i)	Working shown to calculate 45000Hz	$f = ?$ $f = \frac{N}{t} = \frac{9}{2.0 \times 10^{-4}}$ $f = 45000 \text{ Hz}$	$N = 9 \text{ waves}$ (1 mark)	$t = 2.0 \times 10^{-4} \text{ s}$ (1 mark)	
10b(ii)	One answer from:	Speed of sound in air is the same	The distance is the same		

11a	P: Ultraviolet Q: Infrared	<table border="1"> <tr> <td>EM Type</td><td>Gamma</td><td>X-Ray</td><td>Ultra-violet</td><td>Visible</td><td>Infra-Red</td><td>Microwave</td><td>Radio & TV</td></tr> <tr> <td>Energy</td><td>High</td><td colspan="5">← →</td><td>Low</td></tr> <tr> <td>Frequency</td><td>High</td><td colspan="5">← →</td><td>Low</td></tr> <tr> <td>Wavelength</td><td>Low</td><td colspan="5">← →</td><td>High</td></tr> </table>									EM Type	Gamma	X-Ray	Ultra-violet	Visible	Infra-Red	Microwave	Radio & TV	Energy	High	← →					Low	Frequency	High	← →					Low	Wavelength	Low	← →					High
EM Type	Gamma	X-Ray	Ultra-violet	Visible	Infra-Red	Microwave	Radio & TV																																			
Energy	High	← →					Low																																			
Frequency	High	← →					Low																																			
Wavelength	Low	← →					High																																			
11b Answer to include:		1 mark : Radio Waves 1 mark : Longest Wavelength		Diffraction is greater when the wavelength is longer. Radio waves have the longest wavelength of all types of electromagnetic radiation																																						
11c(i)A Working showing calculation of wavelength		$v = 3.0 \times 10^8 \text{ m s}^{-1}$ $f = 2.42 \text{ GHz} = 2.42 \times 10^9 \text{ Hz}$ $\lambda = ?$ $v = f \times \lambda \quad (1 \text{ mark})$ $3.0 \times 10^8 = 2.42 \times 10^9 \times \lambda \quad (1 \text{ mark})$ $\lambda = 0.12 \text{ m}$																																								
11c(i)B microwaves																																										
11c(ii)A	2.3x10^-5 J	$D = 5.0 \mu\text{Gy} = 5.0 \times 10^{-6} \text{ Gy}$ $E = ?$ $m = 4.5 \text{ kg}$							$D = \frac{E}{m} \therefore 5.0 \times 10^{-6} = \frac{E}{4.5} \therefore E = 5.0 \times 10^{-6} \times 4.5 = 2.3 \times 10^{-5} \text{ J}$																																	
		11c(ii)B 5.0x10^-6 Sv							$H = ?$ $D = 5.0 \mu\text{Gy} = 5.0 \times 10^{-6} \text{ Gy}$ $H = D \quad W_r \quad (1 \text{ mark})$ $H = 5.0 \times 10^{-6} \times 1 \quad (1 \text{ mark})$ $H = 5.0 \times 10^{-6} \text{ Sv} \quad (1 \text{ mark})$																																	
12	Open ended question:	<table border="1"> <tr> <td>1 mark</td> <td>2 marks</td> <td>3 marks</td> </tr> </table>							1 mark	2 marks	3 marks	<p>Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.</p> <p>Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.</p> <p>Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.</p>																														
1 mark	2 marks	3 marks																																								
<table border="1"> <tr> <td>1 mark</td> <td>Source Y</td> </tr> <tr> <td>1 mark</td> <td>Sheet of paper absorbs alpha radiation (reducing the count rate)</td> </tr> <tr> <td>1 mark</td> <td>lead absorbs gamma radiation reducing the count rate further</td> </tr> </table>		1 mark	Source Y	1 mark	Sheet of paper absorbs alpha radiation (reducing the count rate)	1 mark	lead absorbs gamma radiation reducing the count rate further	<p>Some gamma radiation is able to penetrate lead</p> <p>The gamma radiation is able to penetrate the aluminium</p> <p>(Source) Y is the only source with a reduction in count rate due to paper</p>																																		
1 mark	Source Y																																									
1 mark	Sheet of paper absorbs alpha radiation (reducing the count rate)																																									
1 mark	lead absorbs gamma radiation reducing the count rate further																																									
13b(i)	One answer from:	When an (uncharged) atom gains or loses electron(s)		When an (uncharged) atom gains electron(s)		When an (uncharged) atom loses electron(s)																																				
13b(ii)	Answer to include:	1 mark Alpha radiation																																								
		1 mark Alpha radiation only has a short range (in air) or Fewer alpha particles would reach the spark counter at increased distance																																								
13b(iii)	7.5x10^-8 C	Q = ?		$I = 0.12 \mu\text{A} = 0.12 \times 10^{-6} \text{ A}$		$t = 1 \text{ minute} = 60 \text{ s}$																																				
		For 96 sparks:		$Q = I \times t$		(1 mark)																																				
		$Q = 0.12 \times 10^{-6} \times 60$		(1 mark)																																						
		$Q = 7.2 \times 10^{-6} \text{ C}$																																								
		For 1 spark:		$Q = \frac{7.2 \times 10^{-6} \text{ C}}{96}$		(1 mark)																																				
		$Q = 7.5 \times 10^{-8} \text{ C}$		(1 mark)																																						

14a(i)	background count rate	The background count rate should be subtracted from the count rate to the corrected count rate is a true measure of the activity from inside the boy.					
14a(ii)	60 days	<p>Count rate halves from 2000 to 1000 counts per minute</p> <p>corrected count rate (counts per minute)</p> <p>Time Interval = 120-60 days = 60 days</p>	<p>Take any halving of the corrected count rate on the y-axis.</p> <p>Work out the time interval on the x-axis for this halving.</p>				
14a(iii)	180 days	$1 \rightarrow \frac{1}{2} \rightarrow \frac{1}{4} \rightarrow \frac{1}{8}$ <p>3 half-lives to decrease activity to $\frac{1}{8}$ of original value (1 mark)</p> <p>1 half-life = 60 days \therefore 3 half-lives = 3×60 days = 180 days (1 mark)</p>					
14a(iv)	4000 counts per minute	<p>Half-life is 60 days.</p> <p>\therefore 0 days is one half-life before 60 days and the count rate at 0 days should be double the count rate at 60 days.</p> <p>At 60 days the count rate is 2000 days \therefore at 0 days the count rate should be double at 4000 counts per minute.</p>					
14b	Any suitable answer including:	tracers	sterilisation	smoke detectors	measuring thickness of paper		

