

Past Papers

Int 2

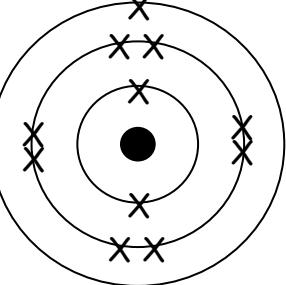
Chemistry

2009

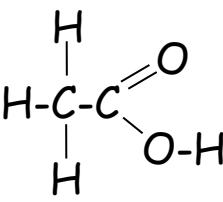
Marking Scheme

Grade Awarded	Mark Required (/80)		% candidates achieving grade
A	55+	69%+	37.5%
B	47+	59%+	20.5%
C	40+	50%+	18.3%
D	36+	45%+	7.3%
No award	<36	<45%	16.4%

Section:	Multiple Choice	Extended Answer
Average Mark:	20.2 /30	29.5 /50


2009 Int2 Chemistry Marking Scheme

MC Qu	Answer	% Pupils Correct	Reasoning								
1	A	95	<p><input checked="" type="checkbox"/> A Argon is found in group 0 and is a noble gas</p> <p><input checked="" type="checkbox"/> B Oxygen is found in group 6</p> <p><input checked="" type="checkbox"/> C Fluorine is found in group 7 and is a halogen</p> <p><input checked="" type="checkbox"/> D Nitrogen is found in group 5</p>								
2	C	69	<p>Solute is the solid being dissolved.</p> <ul style="list-style-type: none"> adding more solute will increase the concentration of the solution. Solvent is the liquid which is doing the dissolving <p>adding more solvent will decrease the concentration.</p>								
3	D	95	<p><input checked="" type="checkbox"/> A zinc is below magnesium in the reactivity series so zinc reacts slower</p> <p><input checked="" type="checkbox"/> B magnesium lumps react slower than magnesium powder due larger particle size</p> <p><input checked="" type="checkbox"/> C zinc is below magnesium in the reactivity series so zinc reacts slower</p> <p><input checked="" type="checkbox"/> D Fastest: most reactive metal + highest concentration + smallest particles size</p>								
4	B	89	<p><input checked="" type="checkbox"/> A Isotopes have same number of protons but W=17 protons and X=11 protons</p> <p><input checked="" type="checkbox"/> B Isotopes have same number of protons but different number of neutrons</p> <p><input checked="" type="checkbox"/> C Isotopes have same number of protons but X=11 protons and Y=17 protons</p> <p><input checked="" type="checkbox"/> D Isotopes have same number of protons but Y=17 protons and Z=18 protons</p>								
5	B	74	<p><input checked="" type="checkbox"/> A Solutions of ions are written $\text{Na}^+(\text{aq}) + \text{Cl}^-(\text{aq})$ not $\text{Na}^+(\text{l}) + \text{Cl}^-(\text{l})$</p> <p><input checked="" type="checkbox"/> B (s) = solid, (l) = liquid, (g) = gas and (aq) = aqueous</p> <p><input checked="" type="checkbox"/> C water is written as $\text{H}_2\text{O}(\text{l})$ as water is the solvent not the solute</p> <p><input checked="" type="checkbox"/> D NaCl is a solid before it is dissolved in the solvent water.</p>								
6	A	70	<p><input checked="" type="checkbox"/> A Metallic Bonding: positive ions with delocalised electrons</p> <p><input checked="" type="checkbox"/> B Metallic bonding has positive ions (the nucleus and the inner electron shells)</p> <p><input checked="" type="checkbox"/> C Ionic bonding: negative ion and positive ions attracted to each other</p> <p><input checked="" type="checkbox"/> D Covalent bonding: a shared pair of electrons between two nuclei</p>								
7	D	81	<p>The most polar bond has biggest difference in the attraction for electrons (C-F)</p> <p>The least polar bond has smallest difference in the attraction for electrons (C-I)</p>								
8	C	43	<p><input checked="" type="checkbox"/> A diagram shows a mixture of elements</p> <p><input checked="" type="checkbox"/> B diagram shows a diatomic (two-atom) element</p> <p><input checked="" type="checkbox"/> C diagram shows a diatomic (two-atom) compound</p> <p><input checked="" type="checkbox"/> D diagram shows a triatomic (three-atom) compound</p>								
9	B	48	<p><input checked="" type="checkbox"/> A diagram shows a covalent network (sodium chloride is ionic)</p> <p><input checked="" type="checkbox"/> B diagram shows a ionic lattice and sodium chloride is ionic</p> <p><input checked="" type="checkbox"/> C diagram shows a covalent molecules (sodium chloride is ionic)</p> <p><input checked="" type="checkbox"/> D diagram shows a metallic substance (sodium chloride is ionic)</p>								
10	D	48	<p><input checked="" type="checkbox"/> A copper ions gain electrons to become copper atoms: $\text{Cu}^{2+} + 2\text{e}^- \rightarrow \text{Cu}$</p> <p><input checked="" type="checkbox"/> B bromide ions lose electrons to become bromine molecules: $2\text{Br}^- \rightarrow \text{Br}_2 + 2\text{e}^-$</p> <p><input checked="" type="checkbox"/> C bromide ions lose electrons to become bromine molecules: $2\text{Br}^- \rightarrow \text{Br}_2 + 2\text{e}^-$</p> <p><input checked="" type="checkbox"/> D copper ions gain electrons to become copper atoms: $\text{Cu}^{2+} + 2\text{e}^- \rightarrow \text{Cu}$</p>								
11	A	44	<table border="1"> <tr> <td></td><td>Write down Formulae</td><td>Write Down Reverse of Cross Over Rule</td><td>Follow arrows to get formula</td></tr> <tr> <td></td><td>Ag_2O</td><td> $\begin{array}{c} \text{Ag} \quad \text{O} \\ \diagdown \quad \diagup \\ 1 \quad 2 \end{array}$ </td><td> <p>Valency of Ag=1</p> <p>Valency of O=2</p> </td></tr> </table>		Write down Formulae	Write Down Reverse of Cross Over Rule	Follow arrows to get formula		Ag_2O	$\begin{array}{c} \text{Ag} \quad \text{O} \\ \diagdown \quad \diagup \\ 1 \quad 2 \end{array}$	<p>Valency of Ag=1</p> <p>Valency of O=2</p>
	Write down Formulae	Write Down Reverse of Cross Over Rule	Follow arrows to get formula								
	Ag_2O	$\begin{array}{c} \text{Ag} \quad \text{O} \\ \diagdown \quad \diagup \\ 1 \quad 2 \end{array}$	<p>Valency of Ag=1</p> <p>Valency of O=2</p>								


12	B	55	<input checked="" type="checkbox"/> A Water is formed from the complete combustion of hydrogen in a fuel <input checked="" type="checkbox"/> B Soot is carbon formed by incomplete combustion of fuels like diesel <input checked="" type="checkbox"/> C Carbon dioxide is formed by complete combustion <input checked="" type="checkbox"/> D Nitrogen Dioxide is formed by sparking of air not from the combustion of fuels																																										
13	C	51	<input checked="" type="checkbox"/> A $\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}$: carbon dioxide formed would turn limewater milky <input checked="" type="checkbox"/> B $\text{CO} + \frac{1}{2}\text{O}_2 \rightarrow \text{CO}_2$: carbon dioxide formed would turn limewater milky <input checked="" type="checkbox"/> C $\text{H}_2 + \frac{1}{2}\text{O}_2 \rightarrow \text{H}_2\text{O}$: Water formed would condense in cold test tube <input checked="" type="checkbox"/> D $\text{C}_2\text{H}_4 + 3\text{O}_2 \rightarrow 2\text{CO}_2 + 2\text{H}_2\text{O}$: carbon dioxide formed would turn limewater milky																																										
14	D	77	<table border="1"> <thead> <tr> <th>Property</th><th>Petroleum Gas</th><th>Gasoline</th><th>Kerosene</th><th>Light gas Oil</th><th>Heavy Gas Oil</th><th>Residue</th></tr> </thead> <tbody> <tr> <td>Viscosity</td><td>Low</td><td colspan="4">↔</td><td>High</td></tr> <tr> <td>Evaporation</td><td>Quickly</td><td colspan="4">↔</td><td>Slowly</td></tr> <tr> <td>Flammability</td><td>High</td><td colspan="4">↔</td><td>Low</td></tr> <tr> <td>Boiling Point</td><td>Low</td><td colspan="4">↔</td><td>High</td></tr> <tr> <td>Molecule Size</td><td>Small</td><td colspan="4">↔</td><td>Large</td></tr> </tbody> </table>	Property	Petroleum Gas	Gasoline	Kerosene	Light gas Oil	Heavy Gas Oil	Residue	Viscosity	Low	↔				High	Evaporation	Quickly	↔				Slowly	Flammability	High	↔				Low	Boiling Point	Low	↔				High	Molecule Size	Small	↔				Large
Property	Petroleum Gas	Gasoline	Kerosene	Light gas Oil	Heavy Gas Oil	Residue																																							
Viscosity	Low	↔				High																																							
Evaporation	Quickly	↔				Slowly																																							
Flammability	High	↔				Low																																							
Boiling Point	Low	↔				High																																							
Molecule Size	Small	↔				Large																																							
15	C	87	<input checked="" type="checkbox"/> A Cycloalkanes have general formula C_nH_{2n} ; C_7H_{10} has wrong number of H atoms <input checked="" type="checkbox"/> B Cycloalkanes have general formula C_nH_{2n} ; C_7H_{12} has wrong number of H atoms <input checked="" type="checkbox"/> C Cycloalkanes have general formula C_nH_{2n} ; C_7H_{14} is cycloheptane <input checked="" type="checkbox"/> D Cycloalkanes have general formula C_nH_{2n} ; C_7H_{16} has wrong number of H atoms																																										
16	A	85	Main Chain: Carbon 1 Carbon 2 Carbon 3 Carbon 4 Carbon 5 in ↓ ↓ ↓ ↓ ↓ $\text{CH}_3 \text{CH}(\text{CH}_3) \text{CH}(\text{OH}) \text{C}(\text{CH}_3)_3$ ↑ ↑ ↑ ↑ ↑ Side chains: - CH_3 side group - OH side group 2x - CH_3 sidegroups																																										
17	D	73	<input checked="" type="checkbox"/> A hydration would not produce 2-methylbutan-2-ol (-OH group on wrong carbon) <input checked="" type="checkbox"/> B hydration would not produce 2-methylbutan-2-ol (-OH group on wrong carbon) <input checked="" type="checkbox"/> C no C=C double bond for water to be added across (hydration) <input checked="" type="checkbox"/> D hydration reaction would produce 2-methylbutan-2-ol																																										
18	A	37	<input checked="" type="checkbox"/> A 2 carbon monomer (ethene) and 3 carbon monomer (propene) <input checked="" type="checkbox"/> B Largest monomer in plastic has 3 carbons (- CH_3 group off main chain) <input checked="" type="checkbox"/> C Largest monomer in plastic has 3 carbons (- CH_3 group off main chain) <input checked="" type="checkbox"/> D Largest monomer in plastic has 3 carbons (- CH_3 group off main chain)																																										
19	D	71	<table border="1"> <thead> <tr> <th>Carbohydrate</th><th>glucose</th><th>fructose</th><th>maltose</th><th>sucrose</th><th>starch</th></tr> </thead> <tbody> <tr> <td>Formula</td><td>$\text{C}_6\text{H}_{12}\text{O}_6$</td><td>$\text{C}_6\text{H}_{12}\text{O}_6$</td><td>$\text{C}_{12}\text{H}_{22}\text{O}_{11}$</td><td>$\text{C}_{12}\text{H}_{22}\text{O}_{11}$</td><td>$(\text{C}_6\text{H}_{10}\text{O}_5)_n$</td></tr> <tr> <td>Reaction with Benedict's Sol</td><td>Blue→Brick Red</td><td>Blue→Brick Red</td><td>Blue→Brick Red</td><td>No reaction</td><td>No reaction</td></tr> </tbody> </table>	Carbohydrate	glucose	fructose	maltose	sucrose	starch	Formula	$\text{C}_6\text{H}_{12}\text{O}_6$	$\text{C}_6\text{H}_{12}\text{O}_6$	$\text{C}_{12}\text{H}_{22}\text{O}_{11}$	$\text{C}_{12}\text{H}_{22}\text{O}_{11}$	$(\text{C}_6\text{H}_{10}\text{O}_5)_n$	Reaction with Benedict's Sol	Blue→Brick Red	Blue→Brick Red	Blue→Brick Red	No reaction	No reaction																								
Carbohydrate	glucose	fructose	maltose	sucrose	starch																																								
Formula	$\text{C}_6\text{H}_{12}\text{O}_6$	$\text{C}_6\text{H}_{12}\text{O}_6$	$\text{C}_{12}\text{H}_{22}\text{O}_{11}$	$\text{C}_{12}\text{H}_{22}\text{O}_{11}$	$(\text{C}_6\text{H}_{10}\text{O}_5)_n$																																								
Reaction with Benedict's Sol	Blue→Brick Red	Blue→Brick Red	Blue→Brick Red	No reaction	No reaction																																								
20	A	70	<input checked="" type="checkbox"/> A Hydrolysis of fat: fat \rightarrow glycerol + 3 fatty acids <input checked="" type="checkbox"/> B Esterification: alcohol + carboxylic acid \rightarrow ester + water <input checked="" type="checkbox"/> C Condensation: small molecules join together with water removed at the join <input checked="" type="checkbox"/> D Neutralisation: acids reacting to form water																																										
21	D	81	<input checked="" type="checkbox"/> A metal oxides e.g. calcium oxide dissolve in water to form alkalis <input checked="" type="checkbox"/> B non-metal oxides e.g. carbon dioxide dissolve in water to form acids <input checked="" type="checkbox"/> C non-metal oxides e.g. sulphur dioxide dissolve in water to form acids <input checked="" type="checkbox"/> D zinc oxide is insoluble in water (p8 of data booklet) so pH is unchanged																																										
22	B	86	<table border="1"> <thead> <tr> <th>Test</th><th>Test 1</th><th>Test 2</th></tr> </thead> <tbody> <tr> <td>Result</td><td>Lime water turns milky</td><td>Blue-green flame colour</td></tr> <tr> <td>Conclusion</td><td>Compound X is a carbonate</td><td>Compound X contains copper ions</td></tr> </tbody> </table>	Test	Test 1	Test 2	Result	Lime water turns milky	Blue-green flame colour	Conclusion	Compound X is a carbonate	Compound X contains copper ions																																	
Test	Test 1	Test 2																																											
Result	Lime water turns milky	Blue-green flame colour																																											
Conclusion	Compound X is a carbonate	Compound X contains copper ions																																											
23	A	53	<table border="1"> <thead> <tr> <th>Acid</th><th>pH</th><th>Conductivity</th><th>Rate of Reaction</th></tr> </thead> <tbody> <tr> <td>0.1 mol l⁻¹ hydrochloric acid</td><td>lower</td><td>higher</td><td>faster</td></tr> <tr> <td>0.1 mol l⁻¹ ethanoic acid</td><td>higher</td><td>lower</td><td>slower</td></tr> </tbody> </table>	Acid	pH	Conductivity	Rate of Reaction	0.1 mol l ⁻¹ hydrochloric acid	lower	higher	faster	0.1 mol l ⁻¹ ethanoic acid	higher	lower	slower																														
Acid	pH	Conductivity	Rate of Reaction																																										
0.1 mol l ⁻¹ hydrochloric acid	lower	higher	faster																																										
0.1 mol l ⁻¹ ethanoic acid	higher	lower	slower																																										

24	D	46	<input checked="" type="checkbox"/> A both forward and reverse reaction proceed at equal rates <input checked="" type="checkbox"/> B water is mainly molecules with few ions <input checked="" type="checkbox"/> C water is mainly molecules with few ions <input checked="" type="checkbox"/> D rate of forward reaction = rate of reverse reaction \therefore concentrations remain constant
25	C	57	<input checked="" type="checkbox"/> A No C=C double bonds to add a molecule across <input checked="" type="checkbox"/> B No acid (H^+ ions) present to be reacted into water. <input checked="" type="checkbox"/> C Precipitation: insoluble solid product formed during reaction <input checked="" type="checkbox"/> D No gain or loss of electrons so not a redox reaction
26	C	65	<input checked="" type="checkbox"/> A no gas passes through water so soluble gas is not removed <input checked="" type="checkbox"/> B gas does not pass through water and gas cannot escape on other side <input checked="" type="checkbox"/> C Gas passes through water, soluble gas is removed and remaining gas passes out <input checked="" type="checkbox"/> D gas cannot escape on other side
27	A	80	<input checked="" type="checkbox"/> A Highest voltage and electrons flow from X (magnesium) to Y (copper) <input checked="" type="checkbox"/> B Electron flow is from Y to X as Y (magnesium) is more reactive than X (copper) <input checked="" type="checkbox"/> C Not highest voltage as zinc/tin is not as far apart magnesium/copper <input checked="" type="checkbox"/> D Electron flow is from Y to X as Y (zinc) is more reactive than X (tin)
28	C	53	<input checked="" type="checkbox"/> A Electrons are gained in reduction and appear before the arrow in an equation <input checked="" type="checkbox"/> B Electrons are gained in reduction and appear before the arrow in an equation <input checked="" type="checkbox"/> C Titanium atoms are oxidised as electrons are lost (electrons after the arrow) <input checked="" type="checkbox"/> D Titanium ions are products and are the products of the oxidation
29	A	73	<input checked="" type="checkbox"/> A S is most reactive, R is least reactive and P is more reactive than Q <input checked="" type="checkbox"/> B S is more reactive than P as electrons flow from S to P <input checked="" type="checkbox"/> C R is least reactive metal as it is obtained by heating ore alone <input checked="" type="checkbox"/> D P is more reactive than Q as P displaces Q from solution
30	B	67	<input checked="" type="checkbox"/> A Ferroxyl indicator turns pink in the presence of OH^- ions <input checked="" type="checkbox"/> B Ferroxyl indicator turns blue in the presence of Fe^{2+} ions <input checked="" type="checkbox"/> C Fe^{3+} ions have no effect on ferroxyl indicator <input checked="" type="checkbox"/> D Cu^{2+} ions have no effect on ferroxyl indicator

2009 Int2 Chemistry Marking Scheme

Long Qu	Answer	Reasoning								
1a	<table border="1" style="display: inline-table; vertical-align: middle;"> <tr><td>11</td></tr> <tr><td>13</td></tr> </table>	11	13	<p>No. of protons = atomic number = 11 = 11 No. of neutrons = mass number - atomic number = 24 - 11 = 13 No of electrons = atomic number - charge = 11 - 0 = 11</p>						
11										
13										
1b(i)		<p>Sodium has an electron arrangement of 2,8,1 (p6 data booklet)</p> <ul style="list-style-type: none"> inner shell holds a maximum of 2 electrons next shell holds a maximum of 8 electrons next shell has one electron (but can hold a maximum of 8) 								
1b(ii)	Positive nucleus attracts electrons	The positively charge nucleus is attracted to the negatively charges electrons spinning around the nucleus.								
2a	<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <th>Equipment</th> <th>Label</th> </tr> <tr> <td>Flask</td> <td>Potassium permanganate + hydrochloric acid</td> </tr> <tr> <td>Test Tube 1</td> <td>Water</td> </tr> <tr> <td>Test Tube 2</td> <td>concentrated sulphuric acid</td> </tr> </table>	Equipment	Label	Flask	Potassium permanganate + hydrochloric acid	Test Tube 1	Water	Test Tube 2	concentrated sulphuric acid	Problem Solving: information transfer from written passage to diagram
Equipment	Label									
Flask	Potassium permanganate + hydrochloric acid									
Test Tube 1	Water									
Test Tube 2	concentrated sulphuric acid									
2b(i)	Higher the atomic no, the higher the melting point	Problem Solving: Interpretation of graph & conclusion formation								
2b(ii)	450°C ±20°C	Problem Solving: Prediction from a graph								
3a	exothermic	Exothermic Reactions: Heat energy given out Endothermic Reaction: Energy absorbed from the surroundings								
3b(i)	Line graph showing:	$\frac{1}{2}$ mark: labelling axes $\frac{1}{2}$ mark: correct scales $\frac{1}{2}$ mark: plotting points $\frac{1}{2}$ mark: drawing line								
3b(ii)	13g	Problem Solving: estimation of point on graph								
3c	Reduces heat loss to surroundings	Polystyrene is a poor conductor of heat and reduces heat loss during the experiment.								
4a	$\begin{array}{c} \text{Fe}_2\text{O}_3 + 3\text{CO} \\ \downarrow \\ 2\text{Fe} + 3\text{CO}_2 \end{array}$	$\text{Fe}_2\text{O}_3 + 3\text{CO} \longrightarrow 2\text{Fe} + 3\text{CO}_2$								
4b	5600	<p>gfm C = 12g</p> $\text{no of mol} = \frac{\text{mass}}{\text{gfm}} = \frac{1200000\text{g}}{12 \text{ g mol}^{-1}} = 100000 \text{ mol}$ $\begin{array}{ccc} \text{CO}_2 & + & \text{C} \\ 1\text{mol} & & 2\text{mol} \\ 100000\text{mol} & & 200000\text{mol} \end{array} \longrightarrow \begin{array}{c} 2\text{CO} \\ 200000\text{mol} \end{array}$ <p>Gfm Co = (1x12)+(1x16) = 12+16 = 28g $\text{mass} = \text{no. of mol} \times \text{gfm} = 200000 \times 28 = 5600000\text{g} = 5600\text{kg}$</p>								

4c	To provide oxygen in Zone 1	Oxygen is a reactant in the reaction in zone 1: $C + O_2 \rightarrow CO_2$						
5a	Gases have different boiling points	Fractional distillation separates substances with different boiling points						
5b	Liquid	200°C is below this temperature that Nitrogen boils (-196°C) \therefore nitrogen has yet to boil at this temperature and is still a liquid						
5c	Neutralisation	Carbon dioxide is a non-metal oxide and dissolves in water to form an acid This acid reacts with the alkali sodium hydroxide by a neutralisation reaction						
6a	A substance which burns to give out energy	Fuels are burned for the purpose of releasing energy which can then be used for a purpose.						
6b(i)	Number between 0 → 19	Problem Solving: Estimation of octane number from table of information						
6b(ii)	One from:	The longer the carbon chain the more efficient the fuel Branch chains increase the efficiency of the fuel						
7a	Aluminium oxide	Cracking is the process where less useful, longer saturated chains are broken into more useful, shorter chains that can be unsaturated.						
7b(i)	C_4H_8 or butene	$C_{12}H_{26} \rightarrow C_8H_{18} + C_4H_8$						
7b(ii)	Bromine solution decolourises	Bromine solution reacts with C=C double bonds and decolourises from brown to colourless as it reacts						
8a	ethyne	Alkynes have a C≡C triple bond as a functional group: $H - C \equiv C - H$						
8b(i)	Structure of but-2-yne	$\begin{array}{c} H & & H \\ & C - C \equiv C - C - H \\ & & \\ H & & H \end{array}$						
8b(ii)	Bromine atoms must be on adjacent carbons	For this reaction, the bromine atoms must be on adjacent carbons (carbons next door to each other)						
9a	$\begin{array}{c} H \\ \\ H - N - \\ \\ H \end{array}$	<table border="1"> <tr> <td>$\begin{array}{c} R \\ \\ H - N - C - C = O \\ \\ H \end{array}$</td> <td>$\begin{array}{c} H \\ \\ H - N - \\ \\ H \end{array}$</td> <td>$\begin{array}{c} O \\ \\ - C - O - H \end{array}$</td> </tr> <tr> <td>Amino Acid</td> <td>Amine group</td> <td>Carboxyl group</td> </tr> </table>	$\begin{array}{c} R \\ \\ H - N - C - C = O \\ \\ H \end{array}$	$\begin{array}{c} H \\ \\ H - N - \\ \\ H \end{array}$	$\begin{array}{c} O \\ \\ - C - O - H \end{array}$	Amino Acid	Amine group	Carboxyl group
$\begin{array}{c} R \\ \\ H - N - C - C = O \\ \\ H \end{array}$	$\begin{array}{c} H \\ \\ H - N - \\ \\ H \end{array}$		$\begin{array}{c} O \\ \\ - C - O - H \end{array}$					
Amino Acid	Amine group	Carboxyl group						
9b	Amino acids							
9c	Diagram showing:	$\begin{array}{c} H \quad H \\ \quad \\ O \quad N \\ \quad \\ - C - C - \square - N - C - C - \square - N - \\ \quad \quad \quad \\ H \quad H \quad H \quad H \end{array}$						
10a	$starch + water \rightarrow glucose$	$starch + water \xrightarrow{\text{hydrolysis}} \text{glucose}$ $(C_6H_{10}O_5)_n + nH_2O \longrightarrow C_6H_{12}O_6$						

10b	fermentation	glucose $\xrightarrow[\text{(no air)}]{\text{enzymes}}$ ethanol + carbon dioxide $\text{C}_6\text{H}_{12}\text{O}_6 \longrightarrow 2\text{C}_2\text{H}_5\text{OH} + 2\text{CO}_2$												
10c		Ethanoic acid has two carbons and a carboxyl -COOH functional group												
10d	Methyl ethanoate	alcohol + carboxylic acid \longrightarrow ester + water methanol + ethanoic acid \longrightarrow methyl ethanoate + water NB: Alcohol name comes first in ester, carboxylic acid name comes second												
11a	biological catalyst	Enzymes are biological catalysts made of protein. They catalyse the chemical reactions in living organisms at body temperatures.												
11b(i)	Partial ionisation or dissociation of ions	Strong Alkalies: full dissociation (ionisation) of ions Weak Alkali: partial dissociation (ionisation) of molecules into ions												
11b(ii)	Titration	The technique where acids and alkalis are accurately measured from a burette is called titration.												
12a	167	Time = $\frac{1}{\text{rate}} = \frac{1}{0.006} = 166.7\text{s}$												
12b	Increased surface area so more successful collisions to take place	<table border="1"> <thead> <tr> <th>Factor</th> <th>Increase in Rate by</th> <th>Collision Theory</th> </tr> </thead> <tbody> <tr> <td>Concentration</td> <td>Increased concentration</td> <td>High concentration increases the number of collisions which increases the number of successful collisions</td> </tr> <tr> <td>Temperature</td> <td>Increased temperature</td> <td>Higher temperature increases the number of collisions and the energy of the collisions which increases the number of successful collisions</td> </tr> <tr> <td>Surface Area</td> <td>Decreased particle size</td> <td>Smaller particle size means more particles to collide with each other and increases the number of successful collisions</td> </tr> </tbody> </table>	Factor	Increase in Rate by	Collision Theory	Concentration	Increased concentration	High concentration increases the number of collisions which increases the number of successful collisions	Temperature	Increased temperature	Higher temperature increases the number of collisions and the energy of the collisions which increases the number of successful collisions	Surface Area	Decreased particle size	Smaller particle size means more particles to collide with each other and increases the number of successful collisions
Factor	Increase in Rate by	Collision Theory												
Concentration	Increased concentration	High concentration increases the number of collisions which increases the number of successful collisions												
Temperature	Increased temperature	Higher temperature increases the number of collisions and the energy of the collisions which increases the number of successful collisions												
Surface Area	Decreased particle size	Smaller particle size means more particles to collide with each other and increases the number of successful collisions												
12c(i)	0.1	no. of moles = volume \times concentration = $0.1\text{litres} \times 1.0\text{mol l}^{-1} = 0.1\text{mol}$												
12c(ii)	0.25	$2\text{MnO}_4^- + 5\text{C}_2\text{H}_2\text{O}_4 + 6\text{H}^+ \longrightarrow 2\text{Mn}^{2+} + 10\text{CO}_2 + 8\text{H}_2\text{O}$ $\frac{2\text{mol}}{0.1\text{mol}} \quad \frac{5\text{mol}}{5\text{mol} \times 0.1/2} = 0.25\text{mol}$												
13a	No more solid reacts with acid	The solid will continue to react with the acid, giving off a gas, until the acid is all reacted. The unreacted solid will lie on the bottom of the beaker as it is insoluble.												
13b	To ensure all the acid has reacted	It is important that no acid remains and is all reacted. Using an insoluble solid means that all the acid can be reacted and the excess solid removed by filtration.												
13c	$\text{H}_2\text{SO}_4 + \text{MgCO}_3 \downarrow \text{MgSO}_4 + \text{H}_2\text{O} + \text{CO}_2$	$\text{acid} + \text{metal carbonate} \longrightarrow \text{salt} + \text{water} + \text{carbon dioxide}$ $\text{sulphuric acid} + \text{magnesium carbonate} \longrightarrow \text{magnesium sulphate} + \text{water} + \text{carbon dioxide}$ $\text{H}_2\text{SO}_4 + \text{MgCO}_3 \longrightarrow \text{MgSO}_4 + \text{H}_2\text{O} + \text{CO}_2$												
14a	Fe_2O_3	<table border="1"> <tr> <td>Write down Valency below each element's symbol</td> <td>Put in Cross-over Arrows</td> <td>Follow arrows to get formula</td> </tr> <tr> <td>$\begin{array}{cc} \text{Fe} & \text{O} \\ 3 & 2 \end{array}$</td> <td>$\begin{array}{cc} \text{Fe} & \text{O} \\ \diagup & \diagdown \\ 3 & 2 \end{array}$</td> <td>$\text{Fe}_2\text{O}_3$</td> </tr> </table>	Write down Valency below each element's symbol	Put in Cross-over Arrows	Follow arrows to get formula	$\begin{array}{cc} \text{Fe} & \text{O} \\ 3 & 2 \end{array}$	$\begin{array}{cc} \text{Fe} & \text{O} \\ \diagup & \diagdown \\ 3 & 2 \end{array}$	Fe_2O_3						
Write down Valency below each element's symbol	Put in Cross-over Arrows	Follow arrows to get formula												
$\begin{array}{cc} \text{Fe} & \text{O} \\ 3 & 2 \end{array}$	$\begin{array}{cc} \text{Fe} & \text{O} \\ \diagup & \diagdown \\ 3 & 2 \end{array}$	Fe_2O_3												
14b	$\text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + \text{e}^-$	$\text{Fe}^{2+} \rightarrow \text{Fe}^{3+} + \text{e}^-$												
14c	Iron sacrificially protects lower down lead	Lead is protected by the iron by sacrificial protection. Iron provides the lead with electrons to stop the lead corroding.												

15a	$\text{OH}^- + \text{H}^+ \rightarrow \text{H}_2\text{O}$	$2\text{Na}^+ + 2\text{OH}^- + 2\text{H}^+ + \text{SO}_4^{2-} \rightarrow 2\text{Na}^+ + \text{SO}_4^{2-} + 2\text{H}_2\text{O}$ Cancel out any spectator ions which appear on both sides $2\text{Na}^+ + 2\text{OH}^- + 2\text{H}^+ + \text{SO}_4^{2-} \rightarrow 2\text{Na}^+ + \text{SO}_4^{2-} + 2\text{H}_2\text{O}$ Re-write equation omitting spectator ions $2\text{OH}^- + 2\text{H}^+ \rightarrow 2\text{H}_2\text{O}$									
15b(i)	Barium hydroxide has higher concentration of OH^- ions	<table border="1"> <thead> <tr> <th>Compound</th> <th>Sodium Hydroxide</th> <th>Barium Hydroxide</th> </tr> </thead> <tbody> <tr> <td>Formula</td> <td>NaOH</td> <td>$\text{Ba}(\text{OH})_2$</td> </tr> <tr> <td>OH^- ions concentration</td> <td>1 OH^- ion per formula unit</td> <td>2 OH^- ions per formula unit</td> </tr> </tbody> </table>	Compound	Sodium Hydroxide	Barium Hydroxide	Formula	NaOH	$\text{Ba}(\text{OH})_2$	OH^- ions concentration	1 OH^- ion per formula unit	2 OH^- ions per formula unit
Compound	Sodium Hydroxide	Barium Hydroxide									
Formula	NaOH	$\text{Ba}(\text{OH})_2$									
OH^- ions concentration	1 OH^- ion per formula unit	2 OH^- ions per formula unit									
15b(ii)	There are no free ions in the solution	$\text{Ba}^{2+} + 2\text{OH}^- + 2\text{H}^+ + \text{SO}_4^{2-} \rightarrow \text{BaSO}_4(s) + 2\text{H}_2\text{O(l)}$ Insoluble solid formed and no ions on product side to complete the circuit									