

JABstem

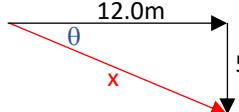
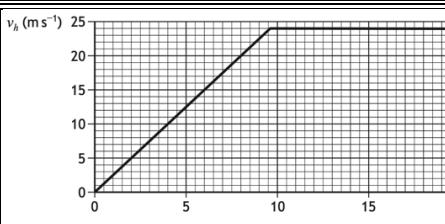
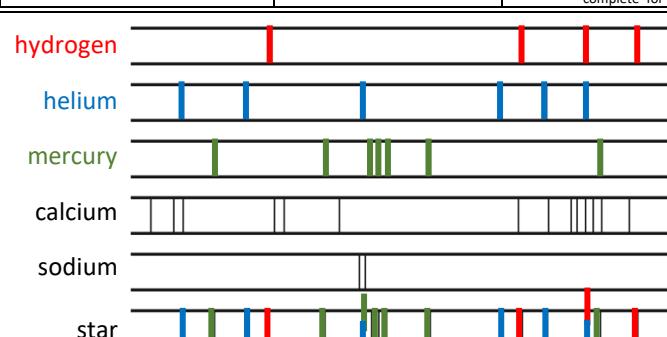
Not to be shared without copyright holder's permission

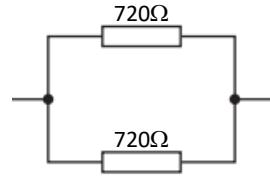
Past Papers

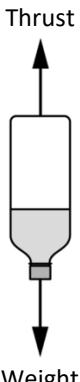
Nat 5 Physics

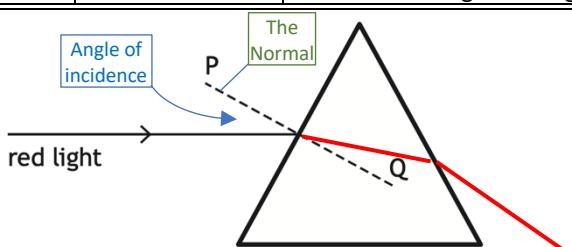
2019 Marking Scheme

Grade Awarded	Mark Required		% candidates achieving grade
	/125	%	
A	86+	68.8%	31.8%
B	72+	57.6%	22.5%
C	58+	46.4%	20.3%
D	44+	35.2%	14.7%
No award	<44	<35.2%	10.7%




Section:	Multiple Choice	Extended Answer	Assignment
Average Mark:	15.5	/25	40.3 /75 17.3 /25


2019 Nat5 Physics Marking Scheme


Question	Answer	% Correct	Physics Covered												
1	A	62	<table border="1"> <tr> <td>Vector Quantity</td><td>force</td><td>velocity</td><td>displacement</td><td>acceleration</td><td>weight</td></tr> <tr> <td>Scalar Quantity</td><td>energy</td><td>speed</td><td>distance</td><td>time</td><td>mass</td></tr> </table>	Vector Quantity	force	velocity	displacement	acceleration	weight	Scalar Quantity	energy	speed	distance	time	mass
Vector Quantity	force	velocity	displacement	acceleration	weight										
Scalar Quantity	energy	speed	distance	time	mass										
2	B	79	$a = 2.0 \text{ m s}^{-2}$ $v = ?$ $u = 6.0 \text{ m s}^{-1}$ $t = 4.0 \text{ s}$ $a = \frac{v - u}{t}$ $2.0 = \frac{v - 6.0}{4.0}$ $8.0 = v - 6.0$ $v = 8.0 + 6.0$ $v = 14.0 \text{ m s}^{-1}$												
3	E	69	<p>The greatest acceleration on the journey will have the steepest gradient on the graph \therefore Section ST is the greatest acceleration.</p>												
4	C	60	$d = ?$ $v = 8.0 \text{ m s}^{-1}$ $t = 2.0 \text{ s}$ $d = v t$ $d = 8.0 \times 2.0$ $d = 16.0 \text{ m}$ <p>Distance from river bank = distance ball kicked – width of river = 16.0m – 3.0m = 13.0m</p>												
5	C	79	<table border="1"> <tr> <td>Statement I - Incorrect</td><td>Statement II - Incorrect</td><td>Statement III - Correct</td></tr> <tr> <td>Sirius A is the closest to Earth but is the oldest star</td><td>There is no relationship between age of star and approximate surface temperature</td><td>There is no relationship between age of star and approximate surface temperature</td></tr> </table>	Statement I - Incorrect	Statement II - Incorrect	Statement III - Correct	Sirius A is the closest to Earth but is the oldest star	There is no relationship between age of star and approximate surface temperature	There is no relationship between age of star and approximate surface temperature						
Statement I - Incorrect	Statement II - Incorrect	Statement III - Correct													
Sirius A is the closest to Earth but is the oldest star	There is no relationship between age of star and approximate surface temperature	There is no relationship between age of star and approximate surface temperature													
6	B	78	<input checked="" type="checkbox"/> A Geostationary satellites have an orbital period of 24 hours to stay above same point on Earth <input checked="" type="checkbox"/> B Geostationary satellites orbital altitude of 36000km and have an orbital period of 24 hours <input checked="" type="checkbox"/> C Geostationary satellites have an orbital period of 24 hours to stay above same point on Earth <input checked="" type="checkbox"/> D Geostationary satellites orbit the earth at an altitude of 36000 km <input checked="" type="checkbox"/> E Geostationary satellites orbit the earth at an altitude of 36000 km												
7	C	73	$W = 240\text{N}$ $g_{\text{earth}} = 9.8\text{N kg}^{-1}$ $m = ?$ $m = \frac{W}{g} = \frac{240 \text{ N}}{9.8 \text{ N kg}^{-1}} = 24.5 \text{ kg}$ $W = ?$ $g_{\text{mars}} = 3.7\text{N kg}^{-1}$ $m = 24.5 \text{ kg}$ $W = m \times g = 24.5\text{kg} \times 3.7 \text{ N kg}^{-1} = 91 \text{ N}$												
8	C	77	$Q = ?$ $I = 2.0 \text{ A}$ $t = 5 \text{ minutes} = 5 \times 60 \text{ s}$ $Q = I t$ $Q = 2.0 \times 5 \times 60$ $Q = 600 \text{ C}$												
9	D	54	<p>From graph: if temperature = 50°C then <i>Resistance</i> = 2.0 kΩ = 2000 Ω In Question: if temperature = 50°C then <i>Current</i> = 0.004 A</p> $V = I R$ $V = 0.004 \times 2000$ $V = 8 \text{ V}$												



			Pressure: Constant	$V_1 = 0.3 \text{ m}^3$ $V_2 = ?$ $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ $\frac{0.3}{293} = \frac{V_2}{323}$ $V_2 = \frac{0.3 \times 323}{293}$ $V_2 = 0.33 \text{ m}^3$	$T_1 = 20^\circ\text{C} = 293 \text{ K}$ $T_2 = 50^\circ\text{C} = 323 \text{ K}$
16	D	30	Amplitude		Wavelength
17	B	84	Amplitude = $\frac{6\text{m}}{2} = 3\text{m}$		3 wavelengths = 24m 1 wavelength = 8m
18	C	34	The to work out the frequency of a wave, both the wavelength and the speed of the wave are required. The question does not give an indication of the speed of the wave. Frequency can also be worked out from the period of the wave where $T = 8\text{ms} = 0.08\text{s}$		$T = \frac{1}{f}$ $0.08 = \frac{1}{f}$ $f = 12.5 \text{ Hz}$
19	D	69	<input checked="" type="checkbox"/> A No curvature on the ends of the waves after the wall <input checked="" type="checkbox"/> B Curvature starts too early. Should only start in the areas where wall blocked wave <input checked="" type="checkbox"/> C Wavelength should be same before and after the wall <input checked="" type="checkbox"/> D Wavelength the same and curvature in the areas where the wall blocked wave <input checked="" type="checkbox"/> E Wavelength should be same before and after the wall		
20	A	53	Angle of incidence = angle between normal and ray inside glass block = $90^\circ - 55^\circ = 35^\circ$ Angle of Refraction = angle between normal and ray before glass block = $90^\circ - 30^\circ = 60^\circ$		
21	B	65	<input checked="" type="checkbox"/> A alpha particles deflect towards the negative plate and gamma rays go straight <input checked="" type="checkbox"/> B alpha particles deflect towards the negative plate and gamma rays go straight <input checked="" type="checkbox"/> C alpha particles deflect towards the negative plate <input checked="" type="checkbox"/> D alpha particles deflect towards the negative plate and gamma rays go straight <input checked="" type="checkbox"/> E gamma rays do not deflect in an electric field		
22	A	77	$A = \frac{N}{t} = \frac{1800}{3 \times 60} = 10 \text{ Bq}$		
23	E	61	$\dot{H} = 5.0 \text{ mSv h}^{-1}$ $\dot{H} = \frac{H}{T}$ $5 = \frac{H}{576}$ $H = 5 \times 576 = 2880 \text{ mSv}$		
24	D	55	<input checked="" type="checkbox"/> A alpha particle tracers inside body would not be detectable outside the body <input checked="" type="checkbox"/> B beta particle tracers inside body would not be detectable outside the body <input checked="" type="checkbox"/> C The tracer half-life is too long to be used safely in the patient <input checked="" type="checkbox"/> D A short half life and a gamma emitter are the most suitable to be used as a tracer <input checked="" type="checkbox"/> E The tracer half-life is too long to be used safely in the patient		
25	B	73	$56 \text{ MBq} \rightarrow 28 \text{ MBq} \rightarrow 14 \text{ MBq} \rightarrow 7 \text{ MBq} \rightarrow 3.5 \text{ MBq}$ 4 half-lives = 40 hours 1 half-life = 10 hours		

Question	Answer	Physics Covered							
1a(i)	13m	Displacement East = 16.0m - 4.0m = 12.0m. Displacement South = 11.0m - 6.0m = 5.0m $x = \sqrt{(12.0)^2 + (5.0)^2}$ $x = \sqrt{144 + 25}$ $x = \sqrt{169}$ $x = 13 \text{ m}$							
1a(ii)	113	$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{5.0}{12.0} = 0.417 \therefore \theta = 23^\circ$ Bearing = $90^\circ + 23^\circ = 113$							
1b	0.40m s ⁻¹ at bearing 113	$s = 13 \text{ m}$ $s = \bar{v} t$ $13 = \bar{v} \times 32.5$ $\bar{v} = 0.40 \text{ m s}^{-1}$ $\bar{v} = ?$ $t = 32.5 \text{ s}$							
1c	2.9 s	$\text{Distance travelled} = 16.0 + 11.0 + 4.0 + 6.0 = 37.0 \text{ m}$ $d = 37.0 \text{ m}$ $\bar{v} = 1.25 \text{ m s}^{-1}$ $d = \bar{v} t$ $37.0 = 1.25 \times t$ $t = 29.6 \text{ s}$ $\text{Difference in time} = 32.5 \text{ s} - 29.6 \text{ s} = 2.9 \text{ s}$ (1 mark)							
1d	Answer to include:	(The forces are) equal (in size) <u>and</u> opposite (in direction)							
2a(i)	2.5 m s ⁻²	$a = ?$ $v = 20 \text{ m s}^{-1}$ $u = 0 \text{ m s}^{-1}$ $t = 8 \text{ s}$ $a = \frac{v - u}{t} = \frac{20 - 0}{8} = 2.5 \text{ m s}^{-2}$ (1 mark) (1 mark) (1 mark)							
2a(ii)	370 kg	$F = 925 \text{ N}$ $m = ?$ $F = m a$ $925 = m \times 2.5$ $m = 370 \text{ kg}$ $a = 2.5 \text{ m s}^{-2}$ $F = m a$ $925 = m \times 2.5$ $m = 370 \text{ kg}$ (1 mark)							
2a(iii)A	275 N	$F = 1200 - 925 = 275 \text{ N}$							
2a(iii)B	One answer from:	streamlined (shape) has wheels aerodynamic Or other suitable answer							
2b	80 m	 $v_h (\text{m s}^{-1})$ $t (\text{s})$ $\text{Distance} = \text{area under graph}$ $= \frac{1}{2} \times 8 \times 20$ $= 80 \text{ m}$							
3	Open Ended Question:	<table border="1"> <tr> <th>1 mark</th> <th>2 marks</th> <th>3 marks</th> </tr> <tr> <td>Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.</td> <td>Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.</td> <td>Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.</td> </tr> </table>		1 mark	2 marks	3 marks	Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.	Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.	Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.
1 mark	2 marks	3 marks							
Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.	Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.	Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.							
4a	Hydrogen Helium Mercury (all three required for 1 mark)	 All hydrogen lines in star All Helium lines in star All Mercury lines in star Some calcium lines missing sodium line missing							

4b(i)	The distance light travels in one year	A light year is the distance electromagnetic radiation like light travels in one year. A light year has a distance: $d = 3.0 \times 10^8 \text{ m s}^{-1} \times 1 \times 365.25 \times 24 \times 60 \times 60 \text{ s} = 9.5 \times 10^{15} \text{ m}$									
4b(ii)	$9.2 \times 10^{17} \text{ m}$	$d = v \times t$ $d = 3 \times 10^8 \times 97 \times 365.25 \times 24 \times 60 \times 60$ $d = 9.2 \times 10^{17} \text{ m}$									
4c(i)	One answer from:	No atmosphere to absorb light	full range of EM waves can be observed	can be used in daytime or cloudy weather	no light pollution						
4c(ii)	One answer from:	GPS	weather forecasting	communications	scientific discovery						
5a(i)	Graph showing:	<table border="1"> <tr> <td>1 mark</td> <td>1 mark</td> <td>1 mark</td> </tr> <tr> <td>suitable scales, labels and units</td> <td>all points plotted accurately to \pm half a division</td> <td>best fit curve</td> </tr> </table>				1 mark	1 mark	1 mark	suitable scales, labels and units	all points plotted accurately to \pm half a division	best fit curve
1 mark	1 mark	1 mark									
suitable scales, labels and units	all points plotted accurately to \pm half a division	best fit curve									
5a(ii)	Answer to include:	1 mark (Resistance of wire) increases (as the length of wire increases)	1 mark Current decreases (as the length of wire increases).								
5a(iii)	0.55 A										
5a(iv)	Repeat (and average)	Repeating an experiment allows and average to be worked out. This reduces the chance of a rogue result changing the results to a different conclusion.									
5b	Answer to include:	1 mark Resistance will be less (than 5.2Ω)	1 mark The wire now has shorter length (between X and Y)	or	Two wires are connected in parallel						
6a(i)	0.025 A	$R_T = R_1 + R_2 + R_3$ $R_T = 180 + 180 + 120$ $R_T = 480 \Omega$ $V = 12 \text{ V}$ $I = ?$ $V = I R$ $12 = I \times 480$ $I = 0.025 \text{ A}$									
6a(ii)	0.075 W	$P = ?$ $I = 0.025 \text{ A}$ $P = I^2 R$ $P = (0.025)^2 \times 120$ $P = 0.075 \text{ W}$									
6b(i)	480 Ω	<p>Combining Parallel Resistors:</p> $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2}$ $\frac{1}{R_T} = \frac{1}{720} + \frac{1}{720}$ $\frac{1}{R_T} = \frac{2}{720}$ $R_T = 360 \Omega$			Combining Series Resistors:						
6b(ii)	Answer to include:	<table border="1"> <tr> <td>1 mark (Power will be) the same</td> </tr> <tr> <td>1 mark Current will be the same (in the 120 Ω resistor)</td> </tr> </table>				1 mark (Power will be) the same	1 mark Current will be the same (in the 120 Ω resistor)				
1 mark (Power will be) the same											
1 mark Current will be the same (in the 120 Ω resistor)											

7a	Working showing: 91000 J	$P = 3.5 \text{ kW} = 3500 \text{ W}$ $E = ?$ $P = \frac{E}{t}$ $3500 = \frac{E}{26}$ $E = 91000 \text{ J}$	$t = 26\text{s}$
7b(i)	83600 J	$E_h = ?$ $c = 4180$ $E = c \times m$ $E = 4180 \times 0.25$ $E = 83600 \text{ J}$	$\Delta T = 100^\circ\text{C} - 20^\circ\text{C} = 80^\circ\text{C}$ ΔT $\times 80$ (1 mark)
7b(ii)	0.0033 kg	$E_h = 91000 - 83600$ $E_h = 7400 \text{ J}$ $E = m \times l$ $74 = m \times 22.6 \times 10^5$ $m = 0.0033 \text{ kg}$	$m = ?$ $l = 22.6 \times 10^5 \text{ J kg}^{-1}$
7b(iii)	One answer from:	Heat energy lost to the surroundings. or Some of the heat (energy) is used to heat the dispenser.	
8a	Diagram showing:	<p style="text-align: center;">1 mark (including arrow)</p> <p style="text-align: center;">1 mark for arrow and one from: Force of Gravity Pull of gravity Gravitational Pull</p>	
8b	783 N	$P = 1.74 \times 10^5 \text{ Pa}$ $F = ?$ $P = \frac{F}{A}$ $1.74 \times 10^5 = \frac{F}{4.50 \times 10^{-3}}$ $F = 783 \text{ N}$	$A = 4.50 \times 10^{-3} \text{ m}^2$ (1 mark)
8c(i)	$1.5 \times 10^5 \text{ Pa}$	$p_1 = 1.74 \times 10^5 \text{ Pa}$ $V_1 = 7.5 \times 10^{-4} \text{ m}^3$ $p_2 = ?$ $V_2 = 7.5 \times 10^{-4} \text{ m}^3 + 1.2 \times 10^{-4} \text{ m}^3 = 8.7 \times 10^{-4} \text{ m}^3$ (1 mark) $p_1 V_1 = p_2 V_2$ (1 mark) $1.74 \times 10^5 \times 7.5 \times 10^{-4} = p_2 \times 8.7 \times 10^{-4}$ $\frac{1.74 \times 10^5 \times 7.5 \times 10^{-4}}{8.7 \times 10^{-4}} = p_2$ (1 mark) $1.5 \times 10^5 \text{ Pa} = p_2$	(1 mark) p_2 (1 mark)

8c(ii)	Answer to include:	1 mark (individual) particles collide with container/walls less frequently (than before) 1 mark (overall) force (on walls) is less 1 mark pressure decreases															
9a	2.0 m	$v = 3 \times 10^8 \text{ m s}^{-1}$ $f = 153 \text{ MHz} = 153 \times 10^6 \text{ Hz}$ $\lambda = ?$ $v = f \times \lambda$ (1mark) $3 \times 10^8 = 153 \times 10^6 \times \lambda$ (1mark) $\lambda = 2.0 \text{ m}$ (1mark)															
9b	Answer to include:	1 mark The speed of light is (much) greater than the speed of sound 1 mark The sound takes more time to travel (the 100 m)															
9c(i)	6.0 m s ⁻¹	$E_k = 4.5 \times 10^5 \text{ J}$ $m = 25000 \text{ kg}$ $v = ?$ $E_k = \frac{1}{2} m v^2$ (1 mark) $4.5 \times 10^5 = \frac{1}{2} \times 25000 \times v^2$ (1 mark) $v^2 = \sqrt{36}$ $v = 6.0 \text{ m s}^{-1}$ (1 mark)															
9c(ii)	One answer from:	Energy lost (as heat and sound) due to friction air resistance															
10a	Electromagnetic radiation	Also accepted: electromagnetic waves or electromagnetic spectrum															
10b	Frequency is less/lower	EM Type Gamma X-Ray Ultra-violet Visible Infra-Red Microwave Radio & TV <table border="1"> <tr> <td>Energy</td> <td>High</td> <td>←</td> <td>→</td> <td>Low</td> </tr> <tr> <td>Frequency</td> <td>High</td> <td>←</td> <td>→</td> <td>Low</td> </tr> <tr> <td>Wavelength</td> <td>Low</td> <td>←</td> <td>→</td> <td>High</td> </tr> </table>	Energy	High	←	→	Low	Frequency	High	←	→	Low	Wavelength	Low	←	→	High
Energy	High	←	→	Low													
Frequency	High	←	→	Low													
Wavelength	Low	←	→	High													
10c(i)A	(Black bulb) Thermometer	Black bulb thermometer will show an increase in temperature as infra-red radiation is absorbed by the thermometer.															
10c(i)B	radioactive waste	Radiation released by radioactive waste is a source of radiation in the environment															
10c(ii)	One answer from:	Treating skin conditions/jaundice Produces vitamin D Disinfection of hospital instruments <table border="1"> <tr> <td>Checking security markings on banknotes</td> <td>Tanning Sun-beds</td> <td>To 'cure' or harden composite material for fillings or nail gel/polish</td> </tr> </table>	Checking security markings on banknotes	Tanning Sun-beds	To 'cure' or harden composite material for fillings or nail gel/polish												
Checking security markings on banknotes	Tanning Sun-beds	To 'cure' or harden composite material for fillings or nail gel/polish															
11a(i)	Line as shown in diagram:																
11a(ii)	(the) normal																
11a(iii)	Angle of incidence as shown in diagram:																
11b	Answer to include:	1 mark wavelength is the same 1 mark the blocks are made of the same material.															
12a	Answer to include:	1 mark Measure the count in a set time 1 mark Repeat at regular intervals 1 mark Measure and subtract background count															
12b	Carry out experiment over longer time period	The initial corrected count rate is 250 counts per minute and has yet to reach the first halving at 125 counts per minute. The graph would need to extrapolated to get top 125 counts per minute and this could lead to error if not correctly drawn. Leaving for even longer might allow. Multiple halving to give more half-life values which would confirm the reliability of the results achieved.															

12c(i)	$1.5 \times 10^{-8} \text{ Gy}$	$D = ?$ $E = 1.2 \mu\text{J} = 1.2 \times 10^{-6} \text{ J}$ $D = \frac{E}{m}$ $D = \frac{1.2 \times 10^{-6}}{85}$ $D = 1.5 \times 10^{-8} \text{ Gy}$	$m = 80.0 \text{ kg}$ (1 mark) (1 mark) (1 mark)						
12c(ii)	3	$H = 4.5 \times 10^{-8} \text{ Sv}$ $D = 1.5 \times 10^{-8} \text{ Gy}$ $H = D \times W_R$ $4.5 \times 10^{-8} = 1.5 \times 10^{-8} \times W_R$ $W_R = 3$	$W_R = ?$ (1 mark) (1 mark) (1 mark)						
12d	Answer to include:	<table border="1"> <tr> <td>1 mark</td> <td>Photographic film blackened/darkened/fogged</td> </tr> <tr> <td>1 mark</td> <td>Film behind different windows affected by different types of radiation</td> </tr> </table>	1 mark	Photographic film blackened/darkened/fogged	1 mark	Film behind different windows affected by different types of radiation			
1 mark	Photographic film blackened/darkened/fogged								
1 mark	Film behind different windows affected by different types of radiation								
13	Open Ended Question:	<table border="1"> <thead> <tr> <th>1 mark</th> <th>2 marks</th> <th>3 marks</th> </tr> </thead> <tbody> <tr> <td>Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.</td> <td>Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.</td> <td>Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.</td> </tr> </tbody> </table>	1 mark	2 marks	3 marks	Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.	Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.	Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.	
1 mark	2 marks	3 marks							
Candidate has demonstrated a limited understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood at least a little of the physics within the problem.	Candidate has demonstrated a reasonable understanding of the physics involved. They make some statement(s) that are relevant to the situation, showing that they have understood the problem.	Candidate has demonstrated a good understanding of the physics involved. They show a good comprehension of the physics of the situation and provide a logically correct answer to the question posed. This type of response might include a statement of the principles involved, a relationship or an equation, and the application of these to respond to the problem. The answer does not need to be 'excellent' or 'complete' for the candidate to gain full marks.							